Download presentation
Presentation is loading. Please wait.
1
Color Glass Condensate 1.) saturation problem in HEP 2.) evolution equations 3.) basics of gluon saturation 4.) basics of CGC
2
Thanks for material to: Marzia Nardi Larry McLerran Dima Kharzeev Martijn Russcher Elena Ferreiro Kazunori Itakura
3
Experimental puzzle in HEP (I)
4
Froissart Bound
5
Questions
6
Particle Multiplicities in HEP
7
Picture of particle production
8
Deep Inelastic Scattering
10
DIS kinematics
11
DIS kinematics (cont.)
12
Deep Inelastic Scattering (cont.)
13
Structure functions (PDF) of a proton
14
Data (ZEUS 1994)
15
The Gluon ‘blows up’ RHIC
16
The gluon ‘blows up’
17
Gluon saturation
18
Gluon density in hadrons
19
NMC / E665 Shadowing measurements
20
Structure function and DGLAP
21
Qualitative description of DGLAP
22
DGLAP at small x
23
Structure function and BFKL
24
Qualitative description of BFKL
25
BFKL details
26
Visualize BFKL in Bjorken frame
27
Can BFKL explain the rise in F 2 ?
28
Initial Summary: the small x problem
29
Motivation for the CGC
30
Gluon recombination
31
Gribov-Levin-Ryskin equation
32
Shadowing via GLR
33
Saturation region
34
A possible phase diagram
35
Universality in the CGC model
36
Saturation and Quantum Evolution
37
The McLerran-Venugopolan model
38
Why the Color Glass Condensate ?
39
CGC phase diagram
40
CGC formalism details (I)
44
CGC formalism details (I): Classical YM theory
45
CGC formalism details (I): Wilson renormalizaiton
46
CGC formalism summary
47
A new effective theory
48
Another phase diagram
49
Saturation scale
50
Saturation momentum
51
Saturation scale (II)
52
Effective theory solutions
53
Saturation scale in nuclei
54
A time evolution for ‘matter’
55
Phenomenology at RHIC
56
Final phase diagram
58
The reach of RHIC
59
CGC at LHC
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.