Download presentation
Presentation is loading. Please wait.
1
Section 7.2: Exponential Smoothing Quantitative Decision Making 7 th ed By Lapin and Whisler
2
Simple Exponential Smoothing YeartYtYt FtFt 200012014------- 2001216482014 2002316941904 2003421151841 2004521671923 2005624101996 2006724642120 2007821452223 2008912102200 200910270-------
3
Graphing Actual vs Forecast Values
4
Forecasting Errors
5
Two Parameter Smoothing
6
Simple Exponential Smoothing YeartYtYt TtTt btbt FtFt 200012014---------------------- 2001216482014 1648-2014 -366 ------- 200231694 2014-366 1648 200342115
7
Compute T 3 YeartYtYt TtTt btbt FtFt 200012014---------------------- 2001216482014-366------- 20023169416611648 200342115
8
Compute b 3 YeartYtYt TtTt btbt FtFt 200012014---------------------- 2001216482014-366------- 2002316941661-3631648 200342115
9
Seasonal Exponential Smoothing with Three Parameters Many time series have regular seasonal patterns to be incorporated into forecasts. The three-parameter model incorporates a seasonal smoothing constant (beta): T t = Y t /S t –p ) + (1 – )(T t –1 + b t –1 ) b t = (T t – T t –1 ) + (1 – )b t –1 S t = Y t /T t ) + (1 – )S t –p F t+1 = (T t + b t ) S t –p+1
10
Forecasting with Three Parameters
11
The above works for p = 4 quarters or p = 12 months. The preceding slide needs 6 quarters to generate the first (very bad) forecast. The process settles quickly, providing good forecasts p periods into the future.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.