Presentation is loading. Please wait.

Presentation is loading. Please wait.

Evaluation of SPIHT Coding Parameters Shih-Hsuan Yang and Wu-Jie Liao Department of Computer Science and Information Engineering National Taipei University.

Similar presentations


Presentation on theme: "Evaluation of SPIHT Coding Parameters Shih-Hsuan Yang and Wu-Jie Liao Department of Computer Science and Information Engineering National Taipei University."— Presentation transcript:

1 Evaluation of SPIHT Coding Parameters Shih-Hsuan Yang and Wu-Jie Liao Department of Computer Science and Information Engineering National Taipei University of Technology Taipei, Taiwan, ROC December 15, 2003

2 Outline Wavelet Transform SPIHT Quantization Experimental Result Conclusion

3 Wavelet Transform Time domain pixelsTransform domain coefficients

4 Wavelet Transform (1D) h0 h1 2 2 g0 g1 2 2 LPF HPF X(n) y(n) If X(n) = y(n), this called perfect reconstruction

5 Effects of Wavelet Filters Properties of wavelets:  Desirable time-frequency localization.  Compact support.  Orthogonality.  Smoothness, regularity, or vanishing moments.  Symmetry (linear-phase constraint).

6 Wavelet Filters for Evaluation Real to real transform : (irreversible)  5/3, 9/7-F, 9/7-M, 5/11-A, 5/11-C, 13/7-T, 13/7-C (biorthogonal) Integer to integer transform : (reversible)  Haar wavelet (D2, orthogonal)  Daubechies 4 and 6 tap (D4, D6, orthogonal)  9/7, 10/18 (biorthogonal)

7 Real to Real Transform(RWT) Conventional transform (convolves the input signal with the wavelet filter kernel.) Computational complexity is proportion to the length of filter kernel.

8 Real to Real Transform (RWT) indexD2(h 0 )D4(h 0 )D6(h 0 ) 00.70710.48300.332705 10.70710.83650.806915 20.22410.459877 3-0.1294-0.135011 4-0.0854412 50.0352263 index9/7(h 0 )9/7(g 0 )10/18(h 0 )10/18(g 0 ) 00.8526990.7884860.758907730.62335964 10.3774020.418092.076790490.163368 2-0.110624-0.040689-0.157526-0.0856619 3-0.023849-0.0645390.0000824478-0.013765 40.0378280.02885250.03083373 5-0.002528037 6-0.0094524629 7-0.00000272719 80.0009544

9 Integer to Integer Transform (IWT) Fixed-point approximation to conventional transform (RWT). Suitable for lossy and lossless coding. Computational complexity is proportion to lifting steps required.

10 Integer to Integer Transform (IWT) Lifting step 5/3: 9/7-F:

11 Computational complexity RWT D2D4D69/710/18 1.001.562.062.033.59 IWT 5/39/7-F9/7-M5/11A5/11-C13/7C13/7-T 1.001.941.011.52 1.13 Relative computation time required for transformation The simulation is conducted on Pentium-4 2.4GHz PC

12 Effects of Extension Types Periodic extension Odd-symmetric (for odd-tap filter) even-symmetric (for even-tap filter)anti-symmetric (for even-tap filter)

13 SPIHT Quantization Wavelet coefficients c[i]Bit plane of c[i] Significant : | c[i] | >= k=0,1,2,…,n

14 SPIHT Quantization(cont.) Example of Parent-Offspring dependencies (i,j) root O(i,j) offspring of root D(i,j) descendant of root L(i,j) = D(i,j) - O(i,j) Type A Type B

15 SPIHT Algorithm

16 Experiments Images  Lena and baboon. Wavelet filters  IWT and RWT. Extension types  Periodic and symmetric.

17 Test images & Visual Quality Measurement (MSE, PSNR) lena baboon

18 Compression Results (“lena”) bpp RWT D2D4D69/710/18 0.12527.5328.9729.3830.5330.68 0.2530.2131.8532.3533.5833.75 0.533.5035.2435.7536.7436.86 1.037.4738.9239.2639.9239.96 bpp IWT 5/39/7F9/7M5/11A5/11C13/7C13/7T 0.12529.7130.2529.7829.8429.7929.9429.90 0.2532.6033.2432.8732.8132.8833.0433.07 0.535.7536.1735.9335.9235.8936.1436.13 1.038.8738.8438.8038.8938.8039.0339.00

19 Compression Results (“baboon”) bpp RWT D2D4D69/710/18 0.12520.9721.2821.3721.4921.60 0.2522.1422.5422.6422.8822.97 0.524.0824.6024.7925.1125.13 1.027.3127.9728.2128.6228.61 bpp IWT 5/39/7F9/7M5/11A5/11C13/7C13/7T 0.12520.9621.4220.8520.9220.8721.0520.98 0.2522.2522.8022.1822.2322.1722.4022.35 0.524.2225.0724.2824.2524.2324.4924.47 1.027.7128.3727.8027.7927.7628.0227.98

20 Energy Compaction (“lena”) RWTIWT D2D4D69/710/185/39/7-F9/7-M5/11A5/11C13/7C13/7T 97 78968278778182 Energy percentage of DC subband (%,5 level decomposition) 9/7-F 5/3

21 Energy Compaction (“baboon”) RWTIWT D2D4D69/710/185/39/7-F9/7-M5/11A5/11C13/7C13/7T 98 999888989188 91 Energy percentage of DC subband (%,5 level decomposition) 9/7-F5/3

22 Compression Results for Period/Symmetric Extension (lena) bpp RWT D2D4D69/710/18 0.12527.5328.9729.3830.06/30.5330.20/30.68 0.2530.2131.8532.3533.21/33.5833.58/33.75 0.533.5035.2435.7536.52/36.7436.46/36.86 1.037.4738.9239.2639.77/39.9239.75/39.96 bpp IWT 5/39/7F9/7M5/11A5/11C13/7C13/7T 0.125 29.20 /29.71 29.86 /30.25 29.40 /29.78 29.33 /29.84 29.32 /29.79 29.53 /29.94 29.53 /29.90 0.25 32.12 /32.60 32.88 /33.24 32.53 /32.87 32.36 /32.81 32.41 /32.88 32.70 /33.04 32.69 /33.07 0.5 35.50 /35.75 35.96 /36.17 35.73 /35.93 35.72 /35.92 35.72 /35.89 35.90 /36.14 35.89 /36.13 1.0 38.76 /38.87 38.74 /38.84 38.71 /38.80 38.78 /38.89 38.70 /38.80 38.92 /39.03 38.88 /39.00

23 Conclusions 9/7 and 10/18 biothogonal wavelets with symmetric extension provide the best compression performance, but highest complexity. 5/3 filter may be reasonably choice for low complexity codecs.

24 Conclusions This work investigate several parameters of wavelet transform for SPIHT. Provide guidelines for the best tradeoff of a SPIHT-based image compression system.


Download ppt "Evaluation of SPIHT Coding Parameters Shih-Hsuan Yang and Wu-Jie Liao Department of Computer Science and Information Engineering National Taipei University."

Similar presentations


Ads by Google