Presentation is loading. Please wait.

Presentation is loading. Please wait.

High Current Density and High Power Density Operation of Ultra High Speed InP DHBTs Mattias Dahlström 1, Zach Griffith, Young-Min Kim 2, Mark J.W. Rodwell.

Similar presentations


Presentation on theme: "High Current Density and High Power Density Operation of Ultra High Speed InP DHBTs Mattias Dahlström 1, Zach Griffith, Young-Min Kim 2, Mark J.W. Rodwell."— Presentation transcript:

1 High Current Density and High Power Density Operation of Ultra High Speed InP DHBTs Mattias Dahlström 1, Zach Griffith, Young-Min Kim 2, Mark J.W. Rodwell Department of ECE University of California, Santa Barbara, USA mattias@ece.ucsb.edu 805-893-8044, 805-893-3262 fax (1) Now with IBM Microelectronics, Essex Junction, VT (2) Now with Sandia National Labs, NM

2 Overview Fast devices and circuits need high current! –Current limited by Kirk current threshold Device heating –Thermal resistance  Device heating Design of low thermal resistance HBT High Current Devices with state of the art RF performance

3 The need for high current density Scaling laws: Single HBT: f  J e =6.9 mA/  m 2 Output spectrum @ 59.35 GHz, f clk =118.70 GHz Minimize capacitance charging times!  Increase current density Digital circuit Key performance parameters: J e =8 mA/  m 2

4 Thermal conductivity of common materials Ternaries lattice matched to InP

5 HBT: Where is the heat generated? V be = 0.95 V, V ce = 1.3 V Power generation: J E x V CE =6 x 1.5 V=9 mW/  m 2 In the intrinsic collector

6 HBT: heat transport Main heat transport is through the subcollector to the substrate Up to 30 % heat transport up through the emitter contact Thermal resistance of materials in collector and subcollector critical

7 How to design a low thermal resistance HBT A five step process Identify high thermal resistance materials  change them low thermal resistance materials Very simple!

8 SHBT: InGaAs collector Design of low thermal resistance HBT: Initial design: InGaAs collector

9 SHBT: InGaAs collector, InP emitter Design of low thermal resistance HBT: Emitter: InAlAs  InP

10 DHBT: InGaAs/InP collector Design of low thermal resistance HBT: InGaAs collector  InP collector with InGaAlAs grade

11 DHBT: InGaAs/InP collector, InGaAs/InP subcollector Design of low thermal resistance HBT: InGaAs subcollector  InGaAs/InP composite subcollector

12 DHBT: InGaAs/InP collector, thin InGaAs/InP subcollector Design of low thermal resistance HBT: Thick InGaAs in subcollector  thin InGaAs in subcollector

13 Metamorphic-DHBT: InGaAs/InP collector, InGaAs/InP subcollector Design of low thermal resistance Metamorphic HBT: InAlAs,InAlP, InGaAs buffers  InP buffer Young-Min Kim

14 Experimental Measurement of Temperature Rise Temperature rise can be calculated by measuring I C, V CE and  V BE No thermal instability as long as slope<∞ each V BE gives a unique I C

15 Thermoelectric feedback coefficient (data from W. Liu) Thermoelectric feedback coefficient for AlGaAs/GaAs HBTs 4 % smaller Not a large influence from material or structure variations W. Liu: “Thermal Coupling in 2-Finger Heterojunction Bipolar Transistors”, IEEE Transactions on Electron Devices, Vol 42 No6, June 1995 W. Liu: H-F. Chau, E. Beam, "Thermal properties and Thermal Instabilities of InP-Based Heterojunction Bipolar Transistors”, IEEE Transactions on Electron Devices, Vol 43 No3, March 1996

16 Compared to previous UCSB mesa HBT results: Thinner InP collector—decrease  c Collector doping increased—increase J Kirk Thinner InGaAs in subcollector—remove heat Thicker InP subcollector—decrease R c,sheet High f  DHBT Layer Structure and Band Diagram V be = 0.75 V, V ce = 1.3 V Emitter Collector Base InGaAs 3E19 Si 400 Å InP 3E19 Si 800 Å InP 8E17 Si 100 Å InP 3E17 Si 300 Å InGaAs 8E19  5E19 C 300 Å Setback 3E16 Si 200 Å InP 3E18 Si 30 Å InP 3E16 Si 1030 Å SI-InP substrate Grade 3E16 Si 240 Å InP 1.5E19 Si 500 Å InGaAs 2E19 Si 125 Å InP 3E19 Si 3000 Å

17 Thermal resistance results: lattice matched Measured thermal resistances for lattice matched HBTs. Ic= 5 mA, Vce=1.5 V, P=7.5 mW 25 nm InGaAs 12.5 nm InGaAs DeviceBuffer (  m) T c (nm)T sc InGaAs (nm) T sc InP (nm)  ­ JA K/mW DHBT-M1-200251252.5 DHBT-19b-15012.53001.8 DHBT-23-15012.53001.4 50 nm InGaAs  25 nm InGaAs: large improvement

18 Thermal resistance results: metamorphic Measured thermal resistances for metamorphic HBTs. Ic= 5 mA, Vce=1.5 V, P=7.5 mW 25 nm InGaAs InP buffer 50 nm InGaAs InAlP buffer InAlP  InP buffer: large improvement 50 nm InGaAs  25 nm InGaAs: small improvement Device Buffer (  m) T c (nm)T sc InGaAs (nm) T sc InP (nm)  ­ JA K/mW M-HBT-1InAlP 1.5200501257.6 M-HBT-2InP 1.5200501253.3 M-HBT-11InP 1.5200253003.1

19 Device and circuit results Zach Griffith Continuous operation at high current densities greater than peak rf performance (J e = 8 mA/  m 2 ) 28 transistor static frequency divider @ f clk =118.7 GHz shown To be reported, 150 GHz static divider using same Type 1 DHBT structure—chirped superlattice Transistor operation at 13 mA/  m 2 150 nm InGaAs/InP collector 370 GHz f t at J c >8 mA/  m 2

20 Our Mesa DHBTs have Safe Operating Area Extending beyond High-Speed Logic Bias Conditions Low-current breakdown is > 6 Volts this has little bearing on circuit design Safe operating area is > 10 mW/um 2 these HBTs can be biased....at ECL voltages...while carrying the high current densities needed for high speed

21 Conclusions DHBT design with InP subcollector  very low thermal resistance Metamorphic DHBT with InP buffer  low thermal resistance DHBT operation at J c >13 mA/  m 2 Optimal device and circuit performance at J c up to 8 mA/  m 2 HBT I-V operating area allows static frequency dividers operating at speeds over 150 GHz

22 Backup slides

23 HBT

24 Why is thermal management important? As J increases so does the power density. This will lead to an increase in the temperature. TCTC J Kirk LeLe ÅmAμm -2 μm 30001.081 20002.334 15004.119 10009.88.6 For V CE =1V  P D =10.6mWμm -3 For V CE =1V  P D =98mWμm -3 !!

25 Thermal Modeling of HBT (1) 3D Finite Element using Ansys 5.7 K (Thermal conductivity) depends temperature K depends on doping For GaAs heavily doped GaAs 65% less than undoped GaAs Unknown for InP or InGaAs use GaAs dependency J.C.Brice in “Properties of Indium phosphide” eds S Adachi and J.Brice pubs INSPEC London p20-21 S Adachi in “Properties of Latticed –Matched and strained Indium Gallium Arsenide” ed P Bhattacharya pubs INSPEC London p34-39 “CRC Materials science and engineering handbook”, 2nd edition,eds J.F Shackelford,A.Alexander, and J.S Park, pubs CRC press, Boca Raton, p270 MaterialK 300 nK 300 (exp)Refs InP0.681.420.68-0.8771 InGaAs0.0481.3750.048-0.0612 Au3.17-3  Large uncertainty in values

26 Validation of Model Caused by Low K of InGaAs Max T in Collector Ave Tj (Base-Emitter) =26.20°C Measured Tj=26°C Good agreement. Advice Limit InGaAs Increase size of emitter arm Ian Harrison

27 Analysis of 40,80,160 Gbit/s devices To obtain speed inprovements require to scale other device parameters. Speed(Gbit/s)4080160 Collector Thickness(Å)300020001000 Base Sheet resistance ()() 750700 Base contact resistance (-m2)(-m2) 1502010 Base Thickness(Å)400300250 Base Mesa width (  m) 31.60.4 Current Density (mA/  m 2 ) 12.39.8 Emitter. Junction Width (  m) 10.80.2 Emitter Parasitic resistivity (-m2)(-m2) 50205 Emitter Length (  m) 63.33.2 Predicted MS-DFF(GHz)62125237 FtFt (GHz)170260500 F max (GHz)1704401000 TjTj (K)7.51428 T Max (K)102049 T Max (No Etch Stop layer)(K)7.51321 Conservative 1.5x bit rate Reduction of parasitic C BC Device parameters after Rodwell et al When not switching values will double Ian Harrison

28 Mesa DHBT with 0.6  m emitter width, 0.5  m base contact width Z. Griffith, M Dahlström

29 How we measure thermal resistance

30 Layout improvement: Emitter heat sinking Emitter interconnect metal  2 μm to 7 μm ~30 % of heat out through emitter Negligible increase in C be Improved emitter heatsinking


Download ppt "High Current Density and High Power Density Operation of Ultra High Speed InP DHBTs Mattias Dahlström 1, Zach Griffith, Young-Min Kim 2, Mark J.W. Rodwell."

Similar presentations


Ads by Google