Download presentation
Presentation is loading. Please wait.
2
1 數位控制(五)
3
2 data hold
4
3 x(t) G(s) y(t) In continuous-time In discrete-time g(kT) is the system ’ s weighting sequence g(t) is the system ’ s weighting sequence x(t) G(s) y(t)x*(t) X(z)
5
4 pulse transfer function Transfer function continuous-time system Laplace transform Pulse transfer function discrete-time system z transform G(z) X(z) Y(z)
6
5 x(t) G(s) y(t) x*(t) X(z) x(t) G(s) y(t)
7
6 Pulse transfer function of cascade elements x(t) y(t) x*(t)u*(t) x(t) y(t) x*(t)
8
7 Pulse transfer function of closed-loop system R(s) G(s) C(s) E*(s) + - H(s) E(s)
9
8 Pulse transfer function of a digital controller
10
9 Closed-loop pulse transfer function r(t) Plant c(t) e(kT) + - e(t) Digital Controller Zero-order hold D/A R(s) Plant C(s) E*(s) + - E(s) G* D (s) Sampler A/D m(kT)u(t) M*(s)
11
10 PID Controller Proportional-Integral-Derivative (PID) Controller Most traditional and has been use successfully for over 50 years. P: action proportional to the actuating error between the input and the feedback signal. I: action proportional to the integral of the actuating error D: action proportional to the derivative of the actuating error
12
11 Analog PI Controller
13
12 Foxboro 控制器之 PIDA Block 規劃 FW Flow Set FW Flow OUT LAG
14
13 PID Controller Ziegler-Nichols Stability Boundary Tuning 方式,係於 如右上圖之閉迴路 下,逐漸調高 Proportional Gain , 直至 K u 產生如右中 圖所示之震盪為止, 量測震盪週期 P u , 再依所示公式估算 最佳化 P 與 I 值。
15
14 負載響應 在控制參數已調整至最佳化下,該波形之過衝量 Ω (overshoot) 以及衰減比 δ (decay ratio) 皆應趨近於 0.2 。
16
15 PB 值最佳化調整 比例帶 Proportional Band (PB)= 100/P. PB 主要決定負載波形之減 幅 (damping) 以及對稱性, 左圖顯示在最佳化積分時間 下不同 PB 設定下之負載波 形: 較小之 PB(P opt /1.5) 會造成衰 減比 (decay ratio) 較大,亦即 減幅太輕 (light damping) 波 形,應調高其 PB 。 太大之 PB(P opt *1.5) 會造成第 一個波峰呈現非對稱波形並 需較長時間回到穩態,應調 低其 PB 。 圖、不同比例帶 PB 之負載響應波形
17
16 I 值最佳化調整 積分時間 I 值主要決定 負載波形之過衝量 (overshoot) , 左圖顯示在最佳化 PB 下不同 I 值設定下之負 載波形: 較小之 I(Iopt/1.5) 會造 成較大之過衝 (overshoot) ,應調高其 I 值。 較大之 I(Iopt*1.5) 會造 成沒有過衝,亦即 undershoot ,應調低其 I 值。 圖、不同積分時間 I 之負載響應波形
18
17 Pulse transfer function of a digital PID controller R(s) Plant C(s) E*(s) + - E(s) G* D (s) M*(s)
19
18 Discretize the m(t) (positional form)
20
19 Transient response of PID Controller R(s) C(s) E*(s) + - E(s) G* D (s) M*(s) R(z) C(z) + -
21
20 Realization of digital controllers and filters
22
21 Direct programming
23
22 Standard programming
24
23 Series programming
25
24 Parallel programming
26
25 Infinite vs Finite
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.