Download presentation
Presentation is loading. Please wait.
1
1 Regression Homework Solutions EPP 245/298 Statistical Analysis of Laboratory Data
2
October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 2 Exercise 5.1 > library(ISwR) > data(rmr) > attach(rmr) > names(rmr) [1] "body.weight" "metabolic.rate" > plot(body.weight,metabolic.rate) > rmr.lm <- lm(metabolic.rate ~ body.weight) > abline(coef(rmr.lm),col="red",lwd=2)
3
October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 3
4
October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 4 > coef(rmr.lm) (Intercept) body.weight 811.226674 7.059528 > 811.226674 + 7.059528*70 [1] 1305.394 > sum(coef(rmr.lm)*c(1,70)) [1] 1305.394 > predict(rmr.lm,data.frame(body.weight=70)) [1] 1305.394
5
October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 5 > summary(rmr.lm) Call: lm(formula = metabolic.rate ~ body.weight) Residuals: Min 1Q Median 3Q Max -245.74 -113.99 -32.05 104.96 484.81 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 811.2267 76.9755 10.539 2.29e-13 *** body.weight 7.0595 0.9776 7.221 7.03e-09 *** --- Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 Residual standard error: 157.9 on 42 degrees of freedom Multiple R-Squared: 0.5539, Adjusted R-squared: 0.5433 F-statistic: 52.15 on 1 and 42 DF, p-value: 7.025e-09
6
October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 6 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 811.2267 76.9755 10.539 2.29e-13 *** body.weight 7.0595 0.9776 7.221 7.03e-09 *** > 7.0595 - 1.96*0.9776 [1] 5.143404 > 7.0595 + 1.96*0.9776 [1] 8.975596 > tmp <- summary(rmr.lm) > names(tmp) [1] "call" "terms" "residuals" "coefficients" [5] "aliased" "sigma" "df" "r.squared" [9] "adj.r.squared" "fstatistic" "cov.unscaled" > tmp$coef Estimate Std. Error t value Pr(>|t|) (Intercept) 811.226674 76.9755034 10.53876 2.288384e-13 body.weight 7.059528 0.9775978 7.22130 7.025380e-09 > class(tmp$coef) [1] "matrix" > dim(tmp$coef) [1] 2 4
7
October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 7 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 811.2267 76.9755 10.539 2.29e-13 *** body.weight 7.0595 0.9776 7.221 7.03e-09 *** > 7.0595 - 1.96*0.9776 [1] 5.143404 > 7.0595 + 1.96*0.9776 [1] 8.975596 > tmp$coef[2,1] - 1.96*tmp$coef[2,2] [1] 5.143436 > tmp$coef[2,1] + 1.96*tmp$coef[2,2] [1] 8.97562
8
October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 8 Exercise 5.2 > data(juul) > names(juul) [1] "age" "menarche" "sex" "igf1" "tanner" "testvol" > attach(juul) > juul.lm 25)) > summary(juul.lm) Call: lm(formula = sqrt(igf1) ~ age, subset = (age > 25)) Residuals: Min 1Q Median 3Q Max -4.8642 -1.1661 0.1018 0.9450 4.1136 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 18.71025 0.49462 37.828 <2e-16 *** age -0.10533 0.01072 -9.829 <2e-16 *** --- Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 Residual standard error: 1.741 on 120 degrees of freedom Multiple R-Squared: 0.446, Adjusted R-squared: 0.4414 F-statistic: 96.6 on 1 and 120 DF, p-value: < 2.2e-16
9
October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 9
10
October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 10 > plot(age,igf1) > plot(age[age>25],igf1[age>25]) > abline(coef(lm(igf1 ~ age,sub=(age>25))),col="red",lwd=2) > plot(age[age>25],sqrt(igf1)[age>25]) > abline(coef(juul.lm),col="red",lwd=2)
11
October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 11
12
October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 12
13
October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 13
14
October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 14
15
October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 15 > data(malaria)> > names(malaria) [1] "subject" "age" "ab" "mal" > attach(malaria) > hist(ab) > hist(log(ab)) > plot(age,log(ab)) > summary(lm(log(ab) ~ age)) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 3.83697 0.38021 10.092 <2e-16 *** age 0.10350 0.03954 2.618 0.0103 * --- Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 Residual standard error: 1.478 on 98 degrees of freedom Multiple R-Squared: 0.06536, Adjusted R-squared: 0.05582 F-statistic: 6.853 on 1 and 98 DF, p-value: 0.01025 Exercise 5.3
16
October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 16
17
October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 17
18
October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 18
19
October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 19
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.