Download presentation
Presentation is loading. Please wait.
1
ALCN
2
Tableaux Calculus Rules
3
Intersection (C D)(x) C(x) D(x) Unless already present.
4
Union (C D)(x) Unless already present. C(x) D(x)
5
Existential Instantiation ( R.C)(x) C(y) R(x,y) Unless a z already exists such that C(z) and R(x,z). The y must be a new variable.
6
Universal Instantiation ( R.C)(x) R(x,y) C(y) Unless already present.
7
Numeric ( n R)(x) R(x,y 1 ) … R(x,y n ) y 1 y 2 … y n-1 y n Unless z 1, … z n already exist such that R(x,z i ) (1 I n) and z i z j (1 I j n). The y i ’s must be new distinct variables....
8
Numeric ( n R)(x) R(x,y 1 ) … R(x,y n+1 ) [y i /y j ] The y i ’s must be distinct variables. i.e. wherever possible substitute y j for y i where i > j and y i y j is not present. (If not possible to substitute at least one, CLASH.).
9
Example (( 2 R) ( 2 R))(x) ( 2 R)(x) ( 2 R)(x) R(x, y) R(x, z) y z Note: observe that the ( 2 R) rule is not applicable..
10
Example (( 3 R) ( 2 R))(x) ( 3 R)(x) ( 2 R)(x) R(x, y) R(x, z) R(x, w) y z y w z w Note: observe that the ( 2 R) rule is applicable, but fails....
11
Example ( 2 CHILD ( CHILD. )(x) ( 2 CHILD)(x) ( CHILD. )(x) CHILD(x, y) CHILD(x, z) y z (y) Show: ( 2 CHILD) |= ( CHILD) Reduce to satisfiability: Negate conclusion, Add to the KB, Put in negation normal form. ( 2 CHILD) |= ( CHILD) ( 2 CHILD) ( CHILD) ( 2 CHILD) ( CHILD. ) ( 2 CHILD) ( CHILD. ) ( 2 CHILD) ( CHILD. ) Note: because we guarantee at least one for. Also note: is “success”..
12
ALCN Tableaux Calculus Sound Terminates Complete Satisfiability is Decidable Satisfiability is PS PACE -complete. See The Description Logic Handbook for details.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.