Download presentation
Presentation is loading. Please wait.
1
The Multitrait-Multimethod Matrix
2
What Is the MTMM Matrix? An approach developed by Campbell, D. and Fiske, D. (1959). Convergent and Dicriminant Validation by the Multitrait-Multimethod Matrix. 56, 2, 81-105. A matrix (table) of correlations arranged to facilitate the assessment of construct validity An integration of both convergent and discriminant validity
3
What Is the MTMM Matrix? Assumes that you measure each of several concepts (trait) by more than one method. Very restrictive -- ideally you should measure each concept by each method. Arranges the correlation matrix by concepts within methods.
4
PrinciplesPrinciples Convergence: Things that should be related are. Divergence/Discrimination: Things that shouldn't be related aren't.
5
A Hypothetical MTMM Matrix Method 1Method 2Method 3 TraitsA 1 B 1 C 1 A 2 B 2 C 2 A 3 B 3 C 3 A 1 Method 1B 1 C 1 A 2 Method 2 B 2 C 2 A 3 Method 3 B 3 C 3 (.89).51(.89).38.37(.76).57.22.09(.93).22.57.10.68(.94).11.11.46.59.58(.84).56.22.11.67.42.33(.94).23.58.12.43.66.34.67(.92).11.11.45.34.32.58.58.60(.85)
6
(.89).51(.89).38.37(.76).57.22.09(.93).22.57.10.68(.94).11.11.46.59.58(.84).56.22.11.67.42.33(.94).23.58.12.43.66.34.67(.92).11.11.45.34.32.58.58.60(.85) Parts of the Matrix Method 1Method 2Method 3 TraitsA 1 B 1 C 1 A 2 B 2 C 2 A 3 B 3 C 3 A 1 Method 1B 1 C 1 A 2 Method 2 B 2 C 2 A 3 Method 3 B 3 C 3 The reliability diagonal
7
Parts of the Matrix Method 1Method 2Method 3 TraitsA 1 B 1 C 1 A 2 B 2 C 2 A 3 B 3 C 3 A 1 Method 1B 1 C 1 A 2 Method 2 B 2 C 2 A 3 Method 3 B 3 C 3 (.89).51(.89).38.37(.76).57.22.09(.93).22.57.10.68(.94).11.11.46.59.58(.84).56.22.11.67.42.33(.94).23.58.12.43.66.34.67(.92).11.11.45.34.32.58.58.60(.85) Validity diagonals
8
(.89).51(.89).38.37(.76).57.22.09(.93).22.57.10.68(.94).11.11.46.59.58(.84).56.22.11.67.42.33(.94).23.58.12.43.66.34.67(.92).11.11.45.34.32.58.58.60(.85) Parts of the Matrix Method 1Method 2Method 3 TraitsA 1 B 1 C 1 A 2 B 2 C 2 A 3 B 3 C 3 A 1 Method 1B 1 C 1 A 2 Method 2 B 2 C 2 A 3 Method 3 B 3 C 3 Monomethod heterotrait triangles
9
(.89).51(.89).38.37(.76).57.22.09(.93).22.57.10.68(.94).11.11.46.59.58(.84).56.22.11.67.42.33(.94).23.58.12.43.66.34.67(.92).11.11.45.34.32.58.58.60(.85) Parts of the Matrix Method 1Method 2Method 3 TraitsA 1 B 1 C 1 A 2 B 2 C 2 A 3 B 3 C 3 A 1 Method 1B 1 C 1 A 2 Method 2 B 2 C 2 A 3 Method 3 B 3 C 3 Heteromethod heterotrait triangles
10
Parts of the Matrix Method 1Method 2Method 3 TraitsA 1 B 1 C 1 A 2 B 2 C 2 A 3 B 3 C 3 A 1 Method 1B 1 C 1 A 2 Method 2 B 2 C 2 A 3 Method 3 B 3 C 3 (.89).51(.89).38.37(.76).57.22.09(.93).22.57.10.68(.94).11.11.46.59.58(.84).56.22.11.67.42.33(.94).23.58.12.43.66.34.67(.92).11.11.45.34.32.58.58.60(.85) Monomethod blocks
11
(.89).51(.89).38.37(.76).57.22.09(.93).22.57.10.68(.94).11.11.46.59.58(.84).56.22.11.67.42.33(.94).23.58.12.43.66.34.67(.92).11.11.45.34.32.58.58.60(.85) Parts of the Matrix Method 1Method 2Method 3 TraitsA 1 B 1 C 1 A 2 B 2 C 2 A 3 B 3 C 3 A 1 Method 1B 1 C 1 A 2 Method 2 B 2 C 2 A 3 Method 3 B 3 C 3 Heteromethod blocks
12
Interpreting the MTMM Matrix Method 1Method 2Method 3 TraitsA 1 B 1 C 1 A 2 B 2 C 2 A 3 B 3 C 3 A 1 Method 1B 1 C 1 A 2 Method 2 B 2 C 2 A 3 Method 3 B 3 C 3 (.89).51(.89).38.37(.76).57.22.09(.93).22.57.10.68(.94).11.11.46.59.58(.84).56.22.11.67.42.33(.94).23.58.12.43.66.34.67(.92).11.11.45.34.32.58.58.60(.85) Reliability should be highest coefficients.
13
Interpreting the MTMM Matrix Method 1Method 2Method 3 TraitsA 1 B 1 C 1 A 2 B 2 C 2 A 3 B 3 C 3 A 1 Method 1B 1 C 1 A 2 Method 2 B 2 C 2 A 3 Method 3 B 3 C 3 (.89).51(.89).38.37(.76).57.22.09(.93).22.57.10.68(.94).11.11.46.59.58(.84).56.22.11.67.42.33(.94).23.58.12.43.66.34.67(.92).11.11.45.34.32.58.58.60(.85) Convergent validity diagonals should have strong r's.
14
Interpreting the MTMM Matrix Method 1Method 2Method 3 TraitsA 1 B 1 C 1 A 2 B 2 C 2 A 3 B 3 C 3 A 1 Method 1B 1 C 1 A 2 Method 2 B 2 C 2 A 3 Method 3 B 3 C 3 (.89).51(.89).38.37(.76).57.22.09(.93).22.57.10.68(.94).11.11.46.59.58(.84).56.22.11.67.42.33(.94).23.58.12.43.66.34.67(.92).11.11.45.34.32.58.58.60(.85) Convergent: The same pattern of trait interrelationship should occur in all triangles (mono and heteromethod blocks).
15
Interpreting the MTMM Matrix Method 1Method 2Method 3 TraitsA 1 B 1 C 1 A 2 B 2 C 2 A 3 B 3 C 3 A 1 Method 1B 1 C 1 A 2 Method 2 B 2 C 2 A 3 Method 3 B 3 C 3 (.89).51(.89).38.37(.76).57.22.09(.93).22.57.10.68(.94).11.11.46.59.58(.84).56.22.11.67.42.33(.94).23.58.12.43.66.34.67(.92).11.11.45.34.32.58.58.60(.85) Discriminant: A validity diagonal should be higher than the other values in its row and column within its own block (heteromethod).
16
Interpreting the MTMM Matrix Method 1Method 2Method 3 TraitsA 1 B 1 C 1 A 2 B 2 C 2 A 3 B 3 C 3 A 1 Method 1B 1 C 1 A 2 Method 2 B 2 C 2 A 3 Method 3 B 3 C 3 (.89).51(.89).38.37(.76).57.22.09(.93).22.57.10.68(.94).11.11.46.59.58(.84).56.22.11.67.42.33(.94).23.58.12.43.66.34.67(.92).11.11.45.34.32.58.58.60(.85) Disciminant: A variable should have higher r with another measure of the same trait than with different traits measured by the same method.
17
AdvantagesAdvantages l Addresses convergent and discriminant validity simultaneously l Addresses the importance of method of measurement l Provides a rigorous standard for construct validity
18
DisadvantagesDisadvantages l Hard to implement l No known overall statistical test for validity l Requires judgment call on interpretation
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.