Presentation is loading. Please wait.

Presentation is loading. Please wait.

Coulomb excitation and  -decay studies at (REX-)ISOLDE around Z = 28 J. Van de Walle – KVI - Groningen 1. ISOLDE and REX-ISOLDE ; 2. Results around Z=28.

Similar presentations


Presentation on theme: "Coulomb excitation and  -decay studies at (REX-)ISOLDE around Z = 28 J. Van de Walle – KVI - Groningen 1. ISOLDE and REX-ISOLDE ; 2. Results around Z=28."— Presentation transcript:

1 Coulomb excitation and  -decay studies at (REX-)ISOLDE around Z = 28 J. Van de Walle – KVI - Groningen 1. ISOLDE and REX-ISOLDE ; 2. Results around Z=28 : Odd-A cupper isotopes (Z=29) ; Even-A zinc isotopes (Z=30) ; Even-A iron isotopes (Z=26) ;

2 REX-ISOLDE (high energy) : low energy Coulomb excitation < 3 MeV/u using the MINIBALL germanium array. - Resonance Ionization Laser Ion Source  brings in unique beams ! - 30 - 60 keV beams (low energy) - Around 600 isotopes of 60 elements available -  -decay studies ISOLDE and REX-ISOLDE

3 Mn (Z=25) Ni (Z=28) Cu (Z=29) Zn (Z=30) ISOTOPE Yields around Z = 28 : Zn, Cu, Ni, Mn  RILIS ; UC x target – fission by 1.4 GeV protons – 2  A ; 30 keV beams ;  -decay of 61-68 Mn Mass Yield /  C  -decay studies ISOLDE and REX-ISOLDE

4 Mn (Z=25) Ni (Z=28) Cu (Z=29) Zn (Z=30) Mass Yield /  C ISOTOPE Yields including REX efficiency : Zn, Cu, Ni, Mn  post-acceleration possible ; 61,62,63 Mn/Fe, 68 Ni, 67,69,71,73 Cu and 74,76,78,80 Zn. ISOLDE and REX-ISOLDE

5 Specific nuclear structure questions : Evolution of Z=28, N=40 and N=50 shell gaps at extreme isospin  motivated by the "tensor part" of the strong interaction Collectivity sets in around major shell gaps ; Evolution of single particle energies ; f 7/2 p 1/2 f 5/2 p 3/2 sd-shell 28 50 g 9/2 40  p 1/2 f 5/2 p 3/2 28 50 g 9/2 40 f 7/2 sd-shell      Tensor part  j >/ = attractive (  f 5/2 - g 9/2,  p 1/2 - g 9/2 )  j >/ /< = repulsive (  f 7/2 - g 9/2,  p 3/2 - g 9/2 ) Results around Z=28 : introduction

6 Specific nuclear structure questions : Evolution of Z=28, N=40 and N=50 shell gaps at extreme isospin  motivated by the "tensor part" of the strong interaction Collectivity sets in around major shell gaps ; Evolution of single particle energies ; f 7/2 p 1/2 f 5/2 p 3/2 sd-shell 28 50 g 9/2 40  p 1/2 f 5/2 p 3/2 28 50 g 9/2 40 f 7/2 sd-shell      Results around Z=28 : introduction Energy [MeV] Neutron Number Ni Zn Fe 2+2+ 4+4+ 0+0+

7 Energy [MeV] Neutron Number Specific nuclear structure questions : Evolution of Z=28, N=40 and N=50 shell gaps at extreme isospin  motivated by the "tensor part" of the strong interaction Collectivity sets in around major shell gaps ; Evolution of single particle energies ; f 7/2 p 1/2 f 5/2 p 3/2 sd-shell 28 50 g 9/2 40  p 1/2 f 5/2 p 3/2 28 50 g 9/2 40 f 7/2 sd-shell      Results around Z=28 : introduction Ni Zn Fe 2+2+ 4+4+ 0+0+

8 f 7/2 p 1/2 f 5/2 p 3/2 sd-shell 28 50 g 9/2 40  p 1/2 f 5/2 p 3/2 28 50 g 9/2 40 f 7/2 sd-shell      Odd-A cupper isotopes (Z=29) Results around Z=28 : Odd-A cupper isotopes  -decay of neutron-rich Ni isotopes at LISOL facility (gas-cel)

9 f 7/2 p 1/2 f 5/2 p 3/2 sd-shell 28 50 g 9/2 40  p 1/2 f 5/2 p 3/2 28 50 g 9/2 40 f 7/2 sd-shell      Spectroscopic factors needed ! Shell model starts to reproduces this result 56 Ni not a closed core (65% [1], 50% [2] closed core) [ 1] Honma PRC69 034335 (2004), [2] Otsuka PRL 81 1588 (1998) Odd-A cupper isotopes (Z=29) Results around Z=28 : Odd-A cupper isotopes Coulomb excitation of neutron-rich Cu isotopes at REX-ISOLDE facility ("RILIS")

10 f 7/2 p 1/2 f 5/2 p 3/2 sd-shell 28 50 g 9/2 40  p 1/2 f 5/2 p 3/2 28 50 g 9/2 40 f 7/2 sd-shell     Neutron number onset of collectivity around N=40 ? E(2 + 1 ) !!! neutron pair scattering at N=40 ? E(0 + 2 ) !!! Influence of proton excitations across Z=28 ? Influence of neutron excitations across N=50 ? Even-A zinc isotopes (Z=30) Results around Z=28 : Even-A zinc isotopes

11 f 7/2 p 1/2 f 5/2 p 3/2 sd-shell 28 50 g 9/2 40  p 1/2 f 5/2 p 3/2 28 50 g 9/2 40 f 7/2 sd-shell     Neutron number onset of collectivity around N=40 ? E(2 + 1 ) !!! neutron pair scattering at N=40 ? E(0 + 2 ) !!! Influence of proton excitations across Z=28 ? Influence of neutron excitations across N=50 ? Even-A zinc isotopes (Z=30) Results around Z=28 : Even-A zinc isotopes

12 Z f 7/2 p 1/2 f 5/2 p 3/2 sd-shell 28 50 g 9/2 40  p 1/2 f 5/2 p 3/2 28 50 g 9/2 40 f 7/2 sd-shell   Results around Z=28 : Even-A zinc isotopes N = 50 isotones

13 Early Ji-Wildenthal empirical effective interaction PRC 37, p. 1256 (1988) Z f 7/2 p 1/2 f 5/2 p 3/2 sd-shell 28 50 g 9/2 40  p 1/2 f 5/2 p 3/2 28 50 g 9/2 40 f 7/2 sd-shell   Results around Z=28 : Even-A zinc isotopes N = 50 isotones

14 f 7/2 p 1/2 f 5/2 p 3/2 sd-shell 28 50 g 9/2 40  p 1/2 f 5/2 p 3/2 28 50 g 9/2 40 f 7/2 sd-shell    ORNL - Padilla-Rodal et al., PRL 94, 122501 (2005) The benefit of post-accelerated RIBs ! Results around Z=28 : Even-A zinc isotopes Z N = 50 isotones

15 f 7/2 p 1/2 f 5/2 p 3/2 sd-shell 28 50 g 9/2 40  p 1/2 f 5/2 p 3/2 28 50 g 9/2 40 f 7/2 sd-shell     REX-ISOLDE - Van de Walle et al., PRL 99, 142501 (2007) The benefit of post-accelerated RIBs ! Z Results around Z=28 : Even-A zinc isotopes N = 50 isotones

16 JJ4B e ,e = 1.76,0.97 [A. Lisetskiy, A. Brown, et al] Z f 7/2 p 1/2 f 5/2 p 3/2 sd-shell 28 50 g 9/2 40  p 1/2 f 5/2 p 3/2 28 50 g 9/2 40 f 7/2 sd-shell     G-matrix [M. Hjorth-Jensen] + monopole adjustments e ,e = 1.9,0.9 [N. Smirnova et al] Early Ji-Wildenthal empirical effective interaction PRC 37, p. 1256 (1988) Results around Z=28 : Even-A zinc isotopes N = 50 isotones

17 Neutron Number. Even–A iron isotopes (Z=26)  2+ Ljungval et al., PRC 81, 061301(R) (2010) + Rother et al., arXiv:1006.5297 v1 [nucl-ex] Results around Z=28 : Even-A iron isotopes

18 Neutron Number. Even–A iron isotopes (Z=26) Lenzi et al., "The land of deformation south of 68 Ni" arXiv:1009.1846v1 [nucl-th] Include  f 7/2, d 5/2 orbitals in the valence space Z=28 shell gap determined from 80 Zn B(E2), e  =0.5e Results around Z=28 : Even-A iron isotopes  2+ Ljungval et al., PRC 81, 061301(R) (2010) + Rother et al., arXiv:1006.5297 v1 [nucl-ex]

19 Neutron Number Even–A iron isotopes (Z=26) Results around Z=28 : Even-A iron isotopes Low energy Coulex :  (B(E2),Q(2 + )) Lenzi et al., "The land of deformation south of 68 Ni" arXiv:1009.1846v1 [nucl-th] Include  f 7/2, d 5/2 orbitals in the valence space Z=28 shell gap determined from 80 Zn B(E2), e  =0.5e  2+ Ljungval et al., PRC 81, 061301(R) (2010) + Rother et al., arXiv:1006.5297 v1 [nucl-ex]

20 62 Mn Results around Z=28 : Even-A iron isotopes 62 Mn 62 Fe 2+2+ 0+0+ 4+4+ COULEX  -decay 62 Mn + 62 Fe

21 Results around Z=28 : Even-A iron isotopes Energy [keV] Counts / 4 keV 419 keV 62 Mn 62 Fe 877 keV 2+2+ 0+0+ 4+4+ Gaudefroy et al., EPJA 23, 41-48 (2005) (3,4) + COULEX

22 Results around Z=28 : Even-A iron isotopes 419 keV 62 Mn 62 Fe 877 keV 2+2+ 0+0+ 4+4+ (3,4) + COULEX preliminary

23 Results around Z=28 : Even-A iron isotopes 62 Mn 0.77(5) ms (*) x (1 + ) (3 +,4 + ) (*) Preliminary half lives 0+0+ 62 Cr 62 Fe 2+2+ 4+4+ Neutron Number Energy [MeV]  -decay 2+2+ 4+4+ 0+0+ 2+2+ 4+4+ 0+0+ Ni Fe

24 Results around Z=28 : Even-A iron isotopes 62 Mn 0.15(1) ms (*) 0.77(5) ms (*) x (1 + ) (3 +,4 + ) (*) Preliminary half lives 0+0+ 62 Cr 814 keV : 152(13) ms 62 Fe 2+2+ 4+4+ 0+0+ Neutron Number Energy [MeV]  -decay 2+2+ 4+4+ 0+0+ 2+2+ 4+4+ 0+0+ Ni Fe

25 ... thanks !


Download ppt "Coulomb excitation and  -decay studies at (REX-)ISOLDE around Z = 28 J. Van de Walle – KVI - Groningen 1. ISOLDE and REX-ISOLDE ; 2. Results around Z=28."

Similar presentations


Ads by Google