Presentation is loading. Please wait.

Presentation is loading. Please wait.

ARIMA Using Stata. Time Series Analysis Stochastic Data Generating Process –Stable and Stationary Process Autoregressive Process: AR(p) Moving Average.

Similar presentations


Presentation on theme: "ARIMA Using Stata. Time Series Analysis Stochastic Data Generating Process –Stable and Stationary Process Autoregressive Process: AR(p) Moving Average."— Presentation transcript:

1 ARIMA Using Stata

2 Time Series Analysis Stochastic Data Generating Process –Stable and Stationary Process Autoregressive Process: AR(p) Moving Average Process: MA(q) ARMA(p,q) –Integrated Nonstationary Process ARIMA(p,d,q)

3 AR(p)

4 MA(q)

5 ARMA(p,q)

6 Time Series Analysis Identification –Autocorrelation Function MA(q) –Partial Autocorrelation AR(p) –Hypothesis Testing Bartlett Test Box-Pierce Q Test

7 Time Series Analysis Estimation –Maximum Likelihood Estimation –Diagnostic Checking Forecasting –Dynamic Forecast

8 Seasonal ARMA(p,q) Example: U. S. Whole Sale Price Index, 1960Q1-1990Q4Example: U. S. Whole Sale Price Index, 1960Q1-1990Q4

9 Multiplicative ARMA(p,q) Example: Airline Passengers, January 1949- December 1960Example: Airline Passengers, January 1949- December 1960

10 ARMAX(p,q) Example: U.S. Consumption-Income RelationshipExample: U.S. Consumption-Income Relationship

11 Transfer Function The Model Impulse Response Function x t ~ARMA(p,q) Filterted y t

12 Transfer Function The Transformed Model Cross Covariance

13 Transfer Function Cross Correlation Model Identification based on  uv (j) –Under null hypothesis  uv (j) = 0 –Identify the finite-parameter structure of  (B) Model Estimation using ARMAX(p,q):

14 Transfer Function Example –U.S. Consumption-Income Relationship (dpi_pce8.do)dpi_pce8.do


Download ppt "ARIMA Using Stata. Time Series Analysis Stochastic Data Generating Process –Stable and Stationary Process Autoregressive Process: AR(p) Moving Average."

Similar presentations


Ads by Google