Download presentation
Presentation is loading. Please wait.
1
Reverse-Time Migration By A Variable Grid-Size And Time-Step Method Yue Wang University of Utah
2
Outline BackgroundBackground Motivation & ObjectiveMotivation & Objective MethodologyMethodology Numerical ExamplesNumerical Examples ConclusionsConclusions
3
Forward Modeling Distance (km) Depth (km) 1 0 04.5 * obs Source Geophone Line
4
Reverse Time Migration Distance (km) Depth (km) 1 0 04.5 obs Extrapolated Wavefield obs Reversed traces
5
Reverse-Time Migration Extrapolated Wavefield Imaging Condition Migration Section
6
Outline BackgroundBackground Motivation & ObjectiveMotivation & Objective MethodologyMethodology Numerical ExamplesNumerical Examples ConclusionsConclusions
7
Ocean-Bottom Survey Distance (km) Depth (km) 1 0 04.5 * Source Geophone Line
8
Problem Distance (km) Depth (km) 1 0 04.5 * Receiver-side Multiples
9
Synthetic Shot Gather Time (s) Distance (km) Receiver side multiples 2 0 0.93.6
10
Field Data Time (s) Distance (m) 4 0 -80 1900 Receiver side multiples
11
Time Migration Time (s) Distance (m) 4 0 -80 1900 Receiver side multiples
12
Objective Using both primary and receiver side multiple reflections for imaging by reverse-time migration.Using both primary and receiver side multiple reflections for imaging by reverse-time migration. Fast Reverse-Time MigrationFast Reverse-Time Migration Elastic RT Migration for Land & Ocean Bottom Multicomponent DataElastic RT Migration for Land & Ocean Bottom Multicomponent Data
13
Outline BackgroundBackground Motivation & ObjectiveMotivation & Objective MethodologyMethodology Numerical ExamplesNumerical Examples ConclusionsConclusions
14
Ocean-Bottom Survey Distance (km) Depth (km) 1 0 0 *PVUp-going Multi-Component Data
15
Two RTM Schemes Migrate particle velocity onlyMigrate particle velocity only (conventional scheme) Migrate pressure and particle velocity simultaneouslyMigrate pressure and particle velocity simultaneously
16
Key Idea Primary + Multiple Correct Positions P & V Scheme
17
Distance Depth Correct Position Down-going waves Reversed Traces PV
18
Key Idea Primary + Multiple Incorrect Positions V-Only Scheme
19
Particle Velocity Only Scheme Distance Depth Incorrect Reversed Traces V
20
Variable Grid-Size and Time-Step coarse grid, fine time step coarse grid, coarse time step Distance Depth fine grid, fine time step
21
Outline BackgroundBackground Motivation & ObjectiveMotivation & Objective MethodologyMethodology Numerical ExamplesNumerical Examples ConclusionsConclusions
22
Synthetic Marine DataSynthetic Marine Data * 2D Elastic Salt Model * 2D Elastic Salt Model * 3D Acoustic SEG/EAGE Model * 3D Acoustic SEG/EAGE Model 2D Land Data2D Land Data Numerical Results
23
2-D Salt Model Distance (km) Depth (km) 2.7 0 04.5
24
Shot Gather PressureVerticalHorizontal Time (s) Distance (km) 2 0 0.93.6 0.93.6 0.93.6 PS PP
25
Kirchhoff Migration Distance (km) Depth (km) 2.5 0 0.454.05
26
Kirchhoff Migration Distance (km) Depth (km) 2.5 0 0.454.05
27
Distance (km) Depth (km) 2.5 0 0.454.05 Particle-Velocity RT Scheme
28
Distance (km) Depth (km) 2.5 0 0.454.05 P & V RT Scheme
29
Kirchhoff Migration Distance (km) Depth (km) 2.5 0 0.454.05
30
Synthetic Marine DataSynthetic Marine Data * 2D Elastic Salt Model * 2D Elastic Salt Model * 3D Acoustic SEG/EAGE Model * 3D Acoustic SEG/EAGE Model 2D Land Data2D Land Data Numerical Results
31
3-D SEG/EAGE Salt Model Distance (km) Depth (km) 2 0 04.5 Ocean-Bottom Geophone Line Exploding Reflector Source
32
Particle-Velocity RT Scheme Distance (km) Depth (km) 2 0 04.5
33
Particle-Velocity RT Scheme Distance (km) Depth (km) 2 0 04.5
34
Distance (km) Depth (km) 2 0 04.5 P & V RT Scheme
35
Distance (km) Depth (km) 2 0 04.5 P & V Scheme
36
Particle-Velocity RT Scheme Distance (km) Depth (km) 2 0 04.5
37
Distance (km) Depth (km) 2 0 04.5 P & V RT Scheme
38
Synthetic Marine DataSynthetic Marine Data * 2D Elastic Salt Model * 2D Elastic Salt Model * 3D Acoustic SEG/EAGE Model * 3D Acoustic SEG/EAGE Model 2D Land Data2D Land Data Numerical Results
39
East Texas Land Data 2.7 0 Radial Component Vertical Component Time (s) Trace Number 080080 Weak Signal/Noise Ratio
40
Reverse-Time Migration Distance (km) Depth (km) 4 0 027 Distance (km) 027 Kirchhoff Migration (Vertical Component)
41
Conclusions Uses primary and multiple reflections for imagingUses primary and multiple reflections for imaging Variable RTM 10 times faster than standard RTMVariable RTM 10 times faster than standard RTM Migrates land and marine multi-component dataMigrates land and marine multi-component data
42
Acknowledgement We are grateful to the 1999 sponsors of the UTAM consortium for the financial support
43
Questions Please contact Yue Wang at: ywang@mines.utah.edu
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.