Download presentation
Presentation is loading. Please wait.
1
1 Synthesis and Structural Characterization, of Nickel(II) Complexs Supported by Aminodipyridylphosphine Oxide Ligand. The Catalytic Application to Thioacetalization of Aldehyde 學生:江柏誼 指導教授:于淑君 博士 Thioacetalization
2
2 Corey-Seebach Reaction Seebach, D.; Jones, N. R.; Corey, E. J. J. Org. Chem. 1968, 33, 300-105. n=2-6 Base
3
3 Acetalization and Thioacetalization of Carbonyl Compounds
4
4 The Earlier Catalyst for Thioacetalization J.W. Ralls, et. al., J. Am.Chem. Soc. 1949, 71, 3320-3325
5
5 HCl Catalyzed Thioacetalization Robert Ramage, et. al., J. Chem. Soc., Perkin Trans. 1 1984, 71, 1547-1553.
6
6 Lewis Acid Catalyzed Thioacetalization Conventional Lewis Acids BF 3 -Et 2 O 、 ZnCl 2 、 AlCl 3 、 SiCl 4 、 LiOTf 、 InCl 3 Nakata, T. et. al., Tetrahedron Lett. 1985, 26, 6461-6464. Evans, D. V. et. al., J. Am. Chem. Soc. 1977, 99, 5009-5017. Firouzabadi, H. et. al., Bull. Chem. Soc. Jpn. 2001, 74, 2401-2406. Transition Metal Lewis Acids TiCl 4 、 WCl 6 、 CoCl 2 、 Sc(OTf) 3 、 MoCl 5 、 NiCl 2 Kumar, V. et. al., Tetrahedron Lett. 1983, 24, 1289-1292. Firouzabadi, H. et., al. Synlett 1998, 739-741. Goswami, S. et. al., Tetrahedron Lett. 2008, 49, 3092-3096. Lanthanide Metal Lewis Acids Lu(OTf) 3 、 Nd(OTf) 3 Kanta, D. S. J. Chem. Res. Synop. 2004,230-231. Kanta, D. S. Synth. Commun. 2004, 34, 230-231.
7
7 BF 3 -Et 2 O Catalyzed Thioacetalization One use only Paulo J.S. Moran. J. Organomet. Chem., 2000, 603, 220-224
8
8 MoCl 5 or MoO 2 Cl 2 Catalyzed Thioacetalization S. Goswami, A. C. Maity. Tetrahedron Letters, 2008, 49, 3092–3096 One use only
9
9 CoCl 2 Catalyzed Thioacetalization 1hr 91 % One use only 5 mole% CoCl 2 Surya Kanta De. Tetrahedron Letters, 2004, 45, 1035–1036
10
10 Nickel(II) Chloride Catalyzed Thioacetalization 2.5 hour 96 % A. T. Khan et al., Tetrahedron Lett. 2003, 44, 919–922 One use only 10 mole % NiCl 2
11
11 Motivation 1.Traditional high valent metal halide Lewis acids are difficult to handle ex. MCl n,M=Zn 、 W 、 Co 、 Mo….. 2.Nickel is less expensive than other transition metal NiCl 2 50g $ 29.2 WCl 6 100g $ 152.5 PdCl 2 25g $ 849 NIBr 2 50g $ 72.2 W(CO) 6 50g $ 176 3.(DME)NiBr 2 as preferable precursor not (DME)NiCl 2 [HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2 & [HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiCl 2 4.Use HO(CH 2 ) 11 N(H)P(O)(2-py) 2 as chelate ligand [HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2
12
12 Ni => small Δ o => tetrahedral & square planar Pd & Pt => large Δ o => square planar Ligands => large, weak-field => tetrahedral Ligands => small, strong-field => square planar Comparison of M 2+ (d 8 species) Square Planar vs. Tetrahedral Complexes
13
13 R. G. Hayter, F. S. Humiec. Inorg. Chem. 1965, 12, 1701-1706. The tetrahedral structure is increasingly favored in the orders PPh 2 R : P(C 2 H 5 ) 3 < P(C 2 H 5 ) 2 C 6 H 5 < PC 2 H 5 (C 6 H 5 ) 2 < P(C 6 H 5 ) 3 X : Cl < Br < I Square Planar - Tetrahedral Isomerism of Nickel Halide Complexes of Ni(PPh 2 R) 2 X 2
14
14 Preparation of Aminodipyridylphosphine Oxide Ligand 75 % 1 93 % 2
15
15 Preparation of Nickel(II) Complex Catalyst 76 % Paramagnetic 3 2
16
16 Chemical Shift of Paramagnetic Compounds for NMR δ observed =δ diamagnetic + δ hyperfine δ diamagnetic = diamagnetic shift corresponds to the values for the free ligand. δ hyperfine =δ contact + δ dipolar δ contact = contact shifts are caused by spin delocalization of the unpaired electrons through chemical bonds (through bond) δ dipolar = dipolar shifts, between the paramagnetic center and the nucleus of interaction (through space) due to the paramagnetic center presence Major Broad signal J. Phys. Chem. A, 2003, 107, 5821-5825
17
17 Square planar Tetrahedral
18
18 IR of [HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2 HO(CH 2 ) 11 N(H)P(O)(2-py) 2 1569 cm -1 1428 cm -1 1593 cm -1 1430 cm -1 [HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2
19
19 EPR of HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2 g=2 g = 2.18
20
20 SUQID of HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2 χ = m / H χ m = (χ / W) × M μ eff = (3k / Nβ2)1/2(χmT)1/2 = 2.828(χ m T) 1/2 m :磁矩, H :外加磁場 (10000 guess), χ :磁化率 χ m :莫耳磁化率, W :樣品重量, M :樣品分子量 μ eff :有效磁矩, T : 溫度, β :波耳磁元 K :波茲曼常數, N : 6.02 x 1023 slope = 1/(χ m T) = 0.936 χ m T = 1/0.936 μ eff = 2.828 (χ m T) 1/2 μ eff = 2.92
21
21 HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2 Tetrahedral μ eff = 2.92 The Organometallic Chemistry of The Transition Metals. 2005
22
22 FAB-MS of HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2 HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr + = 528 m + /Z
23
23 Nickel Lewis Acids Complex Catalyzed Thioacetalization Thiol = =
24
24 Entry Time Yield (%)Paper Reported cat. (NiCl 2 ) Time Yield (%) 1 1.5 hr922.75 hr96 22 min>998 min96 410 min9945 min90 65 hr9220 hr82
25
25 Entry Time Yield (%) 2 2 min>99 340 min90 410 min99 52 hr90 Entry Time Yield (%) 6 5 hr92 715 hr80 83 hr92
26
26 Entry Time Yield (%) 10 2 hr91 1160 min95 124.5 hr87 1360 min92 Entry Time Yield (%) 14 60 min/ 4.5 hr 79 / 70 60 min94
27
27 Entry Time Yield (%)Paper Reported cat. (NiCl 2 ) Time Yield (%) 15 2.5 hr892.5 hr94 165 min>9930 min93 1830 min941.15 hr89 2018 hr93
28
28 Entry Time Yield (%) 16 5 min>99 172.5 hr91 1830 min94 194.5 hr92 Entry Time Yield (%) 20 18 hr93 2118 hr61 226.5 hr82
29
29 Entry Time Yield (%) 24 2 hr91 2530 min91 265.5 hr79 2750 min97 Entry Time Yield (%) 28 30 min/ 5.5 hr 75/ 82 30 min93
30
30 EntryRThiol 40 o C25 o C Time Yield (%) 29 10 min881.5 hr (1) 92 3015 min872.5 hr (15) 89 311.5 hr865 hr (6) 92 323 hr9018 hr (20) 93
31
31 Comparison of Catalytic Activity Amoung Various Different Catalyst EntryCat.TimeYield (%) APaper ( NiCl 2 anhydrous)30 min93 BNONE24 hour96 CHO(CH 2 ) 11 N(H)P(O)(2-py) 2 190 hour34 D(DME)NiCl 2 5 min90 E[HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiCl 2 35 min93 F(DME)NiBr 2 5 min95 G[HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2 5 min>99
32
32 Proposed Mechanism δ (3)(3)
33
33 Recyclable Nickel(II) Complex Catalyst for Thioacetalization of Aldehyde 1 H NMR Solvent= CDCl 3 (0.01478M 4-Iodoanisole) Recycling NO.Reaction Time Yield 15 min94 % 25 min99 % 35 min99 % 45 min99 % 55 min99 % 6.5 min99% 7.5 min99 % 8.5 min99 %
34
34 Near Future Work for Nickel(II) Complex Immobilization onto AuNPs surfaces NiBr 2 (DME) Cat.
35
35 Conclusions 1.We have successfully synthesized an air- and water-stable and efficient catalyst { [HO(CH 2 ) 11 NHPOpy 2 ]NiBr 2 }. 2. We use 1 H NMR 、 FT-IR 、 EPR 、 SQUID and FAB-MS for structural characterization of Nickel(II) complex, we have proved the compound demonstrated that it is a paramagnetic tetrahedral compound, and we will proceed detection of Elemental Analysis (EA). 3.In Ni-catalyst series, the Nickel(II) complex only can be reused for catalytic of thioacetalization of aldehyde many times without any loss of reactivity.
36
36 Chemoselectivities in Acetalization, and Thioacetalization J. Phys. Chem. A 2006, 110, 2181-2187
37
37 (DME)NiCl 2 5g 3549 (DME)NiBr 2 5g 4060 $ 77.3 CoCl 5 100g $ 75 MoCl 5 100g $ 130 MoO 2 Cl 2 10g $ 120
38
38 EPR of [Ni(CTH)DTBSQ]PF 6 at B = 3.2 Tesla g = 2 g 1 = 5.8 g 1 = 2.4 g 1 = 1.7 Inorganic Chemistry, 1988, 27, 2831-2836 Zero-field spectra and Kramer’s degeneracy (Kramers doublet)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.