Download presentation
Presentation is loading. Please wait.
1
October 8, 2007 16th Asian Test Symposium 2007, Biejing, China 1 1010101011XXXXX00XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X0 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX 10101XX011XXXXXX1XXX010XXX01010XX00XX01XXXXXXXXXXXXX0XXX1XX 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 10101XX011XXXXX10XXX01010101010XX00XX000XXXXXXXXXXXXX0XXX1X 10XXXXX011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X1 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX 1010101011XXXXX00XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X0 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX 10101XX011XXXXXX1XXX010XXX01010XX00XX01XXXXXXXXXXXXX0XXX1XX 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 10101XX011XXXXX10XXX01010101010XX00XX000XXXXXXXXXXXXX0XXX1X 10XXXXX011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X1 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX A Reconfigurable Broadcast Scan Compression Scheme Using Relaxation Based Test Vector Decomposition Aiman H. El-Maleh Mustafa I. Ali Ahmad A. Al-Yamani Department of Computer Engineering King Fahd University of Petroleum & Minerals Saudi Arabia
2
1010101011XXXXX00XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X0 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX 10101XX011XXXXXX1XXX010XXX01010XX00XX01XXXXXXXXXXXXX0XXX1XX 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 10101XX011XXXXX10XXX01010101010XX00XX000XXXXXXXXXXXXX0XXX1X 10XXXXX011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X1 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX October 8, 2007 2 16th Asian Test Symposium 2007, Biejing, China Introduction Direct compatibility analysis based compression (graph coloring) Direct compatibility analysis based compression (graph coloring) Partitions a test set into groups of vectors satisfying a given compatibility constraint Partitions a test set into groups of vectors satisfying a given compatibility constraint “Bottleneck vectors” decomposed using a fast relaxation technique “Bottleneck vectors” decomposed using a fast relaxation technique Result: A partitioned test set satisfying the given tester channel constraint Result: A partitioned test set satisfying the given tester channel constraint
3
1010101011XXXXX00XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X0 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX 10101XX011XXXXXX1XXX010XXX01010XX00XX01XXXXXXXXXXXXX0XXX1XX 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 10101XX011XXXXX10XXX01010101010XX00XX000XXXXXXXXXXXXX0XXX1X 10XXXXX011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X1 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX October 8, 2007 3 16th Asian Test Symposium 2007, Biejing, China Advantages ATPG Independence ATPG Independence Relies only on fault simulations Relies only on fault simulations Reduces constraints on ATPG Reduces constraints on ATPG Parallel ATPG Techniques Parallel ATPG Techniques Able to utilize compacted test sets Able to utilize compacted test sets Multiple solutions with different compression ratio/area overhead tradeoffs Multiple solutions with different compression ratio/area overhead tradeoffs
4
1010101011XXXXX00XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X0 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX 10101XX011XXXXXX1XXX010XXX01010XX00XX01XXXXXXXXXXXXX0XXX1XX 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 10101XX011XXXXX10XXX01010101010XX00XX000XXXXXXXXXXXXX0XXX1X 10XXXXX011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X1 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX October 8, 2007 4 16th Asian Test Symposium 2007, Biejing, China Algorithm’s Input & Output Configurations n v’ test patterns in n p partitions 1XX01XX0 1X0X1X0X 0XXX0XXX X0X1X0X1 X0X1X0X1 0X0X0X0X 0XXX0XXX X1X0X1X0 1X0X1X0X X00XX00X 00XX00XX XX01XX01 1X0X1X0X X0X1X0X1 010X010X X11XX11X 100X100X XX01XX01 N Scan Chains M Representative Scan Chains (a) Multiple Scan Chains Test Vectors Input Configuration (b) Output of Compression Algorithm L flip flops n v test patterns
5
1010101011XXXXX00XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X0 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX 10101XX011XXXXXX1XXX010XXX01010XX00XX01XXXXXXXXXXXXX0XXX1XX 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 10101XX011XXXXX10XXX01010101010XX00XX000XXXXXXXXXXXXX0XXX1X 10XXXXX011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X1 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX October 8, 2007 5 16th Asian Test Symposium 2007, Biejing, China Acceptable & Bottleneck Vectors Acceptable Vectors Acceptable Vectors Can be colored using M colors Can be colored using M colors May need a partition of its own or group together with other vectors May need a partition of its own or group together with other vectors Bottleneck Vectors Bottleneck Vectors Cannot be M colored Cannot be M colored Need to be decomposed into multiple vectors that can be M colored Need to be decomposed into multiple vectors that can be M colored
6
1010101011XXXXX00XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X0 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX 10101XX011XXXXXX1XXX010XXX01010XX00XX01XXXXXXXXXXXXX0XXX1XX 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 10101XX011XXXXX10XXX01010101010XX00XX000XXXXXXXXXXXXX0XXX1X 10XXXXX011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X1 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX October 8, 2007 6 16th Asian Test Symposium 2007, Biejing, China Decomposition based on Relaxation Compatibility can increase as don’t care bits increase Compatibility can increase as don’t care bits increase Each vector decomposed into multiple vectors Each vector decomposed into multiple vectors having greater Xs than the original vector having greater Xs than the original vector each detects a subset of faults of the original each detects a subset of faults of the original bottleneck vectors decomposed until the resulting vectors satisfy the threshold bottleneck vectors decomposed until the resulting vectors satisfy the threshold These new relaxed vectors are partitioned These new relaxed vectors are partitioned
7
1010101011XXXXX00XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X0 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX 10101XX011XXXXXX1XXX010XXX01010XX00XX01XXXXXXXXXXXXX0XXX1XX 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 10101XX011XXXXX10XXX01010101010XX00XX000XXXXXXXXXXXXX0XXX1X 10XXXXX011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X1 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX October 8, 2007 7 16th Asian Test Symposium 2007, Biejing, China Constraints & Objectives Constraints: Constraints: Maintain fault coverage Maintain fault coverage Achieve M tester channels Achieve M tester channels Objectives Objectives Primary: Minimize any increase in test vectors count during bottleneck vector decompositions Primary: Minimize any increase in test vectors count during bottleneck vector decompositions Secondary: Minimize total partitions created to reduce decompressor area Secondary: Minimize total partitions created to reduce decompressor area
8
1010101011XXXXX00XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X0 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX 10101XX011XXXXXX1XXX010XXX01010XX00XX01XXXXXXXXXXXXX0XXX1XX 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 10101XX011XXXXX10XXX01010101010XX00XX000XXXXXXXXXXXXX0XXX1X 10XXXXX011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X1 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX October 8, 2007 8 16th Asian Test Symposium 2007, Biejing, China Minimizing Decomposition Decomposition minimized if faults per bottleneck vector are minimized Decomposition minimized if faults per bottleneck vector are minimized Representative vector obtained after coloring is more specified than the original vector Representative vector obtained after coloring is more specified than the original vector (O)1 X X 0 X 0 X 0 0 X 0 X 1 X 1 X X 0 X X X X 0 1 1 0 X X 0 X X 1 (R)1 X X 0 1 0 1 X 0 X 0 1 1 0 1 X 1 0 1 X 0 X 0 1 1 0 1 X 0 X 0 1 Fault simulate each representative vector obtained to drop detected faults Fault simulate each representative vector obtained to drop detected faults Decompose bottleneck vector to only target remaining faults Decompose bottleneck vector to only target remaining faults
9
1010101011XXXXX00XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X0 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX 10101XX011XXXXXX1XXX010XXX01010XX00XX01XXXXXXXXXXXXX0XXX1XX 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 10101XX011XXXXX10XXX01010101010XX00XX000XXXXXXXXXXXXX0XXX1X 10XXXXX011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X1 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX October 8, 2007 9 16th Asian Test Symposium 2007, Biejing, China Changing Fault Detection Problem Fault coverage linked to representative vectors Fault coverage linked to representative vectors Representative vectors linked to a partition’s coloring configuration Representative vectors linked to a partition’s coloring configuration Partitions can change to accommodate a new vector with re-coloring Partitions can change to accommodate a new vector with re-coloring Representative vector changes if a partition’s coloring configuration changes Representative vector changes if a partition’s coloring configuration changes
10
1010101011XXXXX00XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X0 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX 10101XX011XXXXXX1XXX010XXX01010XX00XX01XXXXXXXXXXXXX0XXX1XX 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 10101XX011XXXXX10XXX01010101010XX00XX000XXXXXXXXXXXXX0XXX1X 10XXXXX011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X1 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX October 8, 2007 10 16th Asian Test Symposium 2007, Biejing, China Changing Fault Detection Problem (cont..) Partition's Compatibility Configuration Member Representative Vector’s Specified Values Faults Covered 1 X 0 1 1 X 0 1 1 0 1 0 X 0 1 0 1 X 1 0 1 X 0 1 0 0 1 0 X 0 1 0 Before change After change
11
1010101011XXXXX00XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X0 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX 10101XX011XXXXXX1XXX010XXX01010XX00XX01XXXXXXXXXXXXX0XXX1XX 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 10101XX011XXXXX10XXX01010101010XX00XX000XXXXXXXXXXXXX0XXX1X 10XXXXX011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X1 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX October 8, 2007 11 16th Asian Test Symposium 2007, Biejing, China End Result A dropped fault may become undetected when its vector is modified later on A dropped fault may become undetected when its vector is modified later on If this fault is not covered by any subsequently created vector, this fault is left out If this fault is not covered by any subsequently created vector, this fault is left out This is more likely for essential faults This is more likely for essential faults
12
1010101011XXXXX00XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X0 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX 10101XX011XXXXXX1XXX010XXX01010XX00XX01XXXXXXXXXXXXX0XXX1XX 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 10101XX011XXXXX10XXX01010101010XX00XX000XXXXXXXXXXXXX0XXX1X 10XXXXX011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X1 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX October 8, 2007 12 16th Asian Test Symposium 2007, Biejing, China Solution Approaches Do not allow any essential fault detection to change while partitioning Select a different partition or create new one Allow any fault to be disturbed but address all undetected faults at the end create new vectors create new vectors
13
1010101011XXXXX00XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X0 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX 10101XX011XXXXXX1XXX010XXX01010XX00XX01XXXXXXXXXXXXX0XXX1XX 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 10101XX011XXXXX10XXX01010101010XX00XX000XXXXXXXXXXXXX0XXX1X 10XXXXX011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X1 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX October 8, 2007 13 16th Asian Test Symposium 2007, Biejing, China Algorithm
14
1010101011XXXXX00XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X0 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX 10101XX011XXXXXX1XXX010XXX01010XX00XX01XXXXXXXXXXXXX0XXX1XX 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 10101XX011XXXXX10XXX01010101010XX00XX000XXXXXXXXXXXXX0XXX1X 10XXXXX011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X1 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX October 8, 2007 14 16th Asian Test Symposium 2007, Biejing, China Decompressor Hardware Partitions counter Patterns counter To Internal Scan Chains (N) From External Scan Inputs (M) MUXs select lines Serial Load Pin
15
1010101011XXXXX00XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X0 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX 10101XX011XXXXXX1XXX010XXX01010XX00XX01XXXXXXXXXXXXX0XXX1XX 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 10101XX011XXXXX10XXX01010101010XX00XX000XXXXXXXXXXXXX0XXX1X 10XXXXX011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X1 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX October 8, 2007 15 16th Asian Test Symposium 2007, Biejing, China Results: s13207 (N=100, L=7)
16
1010101011XXXXX00XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X0 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX 10101XX011XXXXXX1XXX010XXX01010XX00XX01XXXXXXXXXXXXX0XXX1XX 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 10101XX011XXXXX10XXX01010101010XX00XX000XXXXXXXXXXXXX0XXX1X 10XXXXX011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X1 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX October 8, 2007 16 16th Asian Test Symposium 2007, Biejing, China s13207 (N=100, L=7, n v =233)
17
1010101011XXXXX00XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X0 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX 10101XX011XXXXXX1XXX010XXX01010XX00XX01XXXXXXXXXXXXX0XXX1XX 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 10101XX011XXXXX10XXX01010101010XX00XX000XXXXXXXXXXXXX0XXX1X 10XXXXX011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X1 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX October 8, 2007 17 16th Asian Test Symposium 2007, Biejing, China s38417 (N=98, L=17)
18
1010101011XXXXX00XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X0 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX 10101XX011XXXXXX1XXX010XXX01010XX00XX01XXXXXXXXXXXXX0XXX1XX 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 10101XX011XXXXX10XXX01010101010XX00XX000XXXXXXXXXXXXX0XXX1X 10XXXXX011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X1 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX October 8, 2007 18 16th Asian Test Symposium 2007, Biejing, China s38417 (N=98, L=17, n v =68)
19
1010101011XXXXX00XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X0 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX 10101XX011XXXXXX1XXX010XXX01010XX00XX01XXXXXXXXXXXXX0XXX1XX 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 10101XX011XXXXX10XXX01010101010XX00XX000XXXXXXXXXXXXX0XXX1X 10XXXXX011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X1 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX October 8, 2007 19 16th Asian Test Symposium 2007, Biejing, China Comparison with Other Multiple Scan Chain Schemes
20
1010101011XXXXX00XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X0 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX 10101XX011XXXXXX1XXX010XXX01010XX00XX01XXXXXXXXXXXXX0XXX1XX 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 10101XX011XXXXX10XXX01010101010XX00XX000XXXXXXXXXXXXX0XXX1X 10XXXXX011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1X1 101XX01011XXXXX01XXX01010101010XX000X01XXXXXXXXXXXXX0XXX1X1 101XXX1011XXXXXX0XXX01010101010XX000101XXXXXXXXXXXXX0XXX1XX October 8, 2007 20 16th Asian Test Symposium 2007, Biejing, China Questions? Thank you! Thank you!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.