Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Friday, November 10, 2006 “ Programs for sale: Fast, Reliable, Cheap: choose two.” -Anonymous.

Similar presentations


Presentation on theme: "1 Friday, November 10, 2006 “ Programs for sale: Fast, Reliable, Cheap: choose two.” -Anonymous."— Presentation transcript:

1 1 Friday, November 10, 2006 “ Programs for sale: Fast, Reliable, Cheap: choose two.” -Anonymous

2 2 #pragma omp parallel for for(i=1; i<=n; i++) { temp = 2.0*a[i]; a[i] = temp; b[i] = c[i]/temp; }

3 3 When the private clause is encountered, a separate memory location is allocated for each specified variable on each thread. The value of the variable is not initialized; a location is simply set aside for each thread. Private variables must be initialized within the loop. #pragma omp parallel for private(temp) for(i=1; i<=n; i++) { temp = 2.0*a[i]; a[i] = temp; b[i] = c[i]/temp; }

4 4 #pragma omp parallel for private(temp) for(i=1; i<=n; i++) { temp = 2.0*a[i]; a[i] = temp; b[i] = c[i]/temp; } #pragma omp parallel for private(temp) { for(i=1; i<=n; i++) { temp = 2.0*a[i]; a[i] = temp; b[i] = c[i]/temp; } Intel compiler gives error here.

5 5 Note that the loop index, i, is always private no matter what the default. #pragma omp parallel for default(private) shared(n,a,b,c) for(i=1; i<=n; i++) { temp = 2.0*a[i]; a[i] = temp; b[i] = c[i]/temp; }

6 6 j = jstart; #pragma omp parallel for private(j) for(i=1; i<=n; i++){ if(i == 1 || i == n) j = j + 1; a[i] = a[i] + j; } What is wrong here?

7 7 j = jstart; #pragma omp parallel for firstprivate(j) for(i=1; i<=n; i++){ if(i == 1 || i == n) j = j + 1; a[i] = a[i] + j; }

8 8 #pragma omp parallel for lastprivate(x) for(i=1; i<=n; i++) { x = sin( pi * dx * (float)i ); a[i] = exp(x); } lastx = x; parallel for pragma may have both firstprivate and lastprivate clauses and they may have variables in common.

9 9 Environment variable OMP_NUM_THREADS In bash: export OMP_NUM_THREADS=4

10 10 #include int main(void){ int i,tid, numthreads, numprocs, size=10; numthreads = omp_get_num_threads(); numprocs = omp_get_num_procs(); printf("Numthreads before for-loop is=%d numprocs=%d\n", numthreads, numprocs); #pragma omp parallel for private(tid) schedule(static,2) for(i=0; i<size; i++){ numthreads = omp_get_num_threads(); tid = omp_get_thread_num(); printf("Numthreads after for-loop is=%d\n", numthreads); printf("I am thread=%d, I have iteration=%d\n", tid, i); } return 0; }

11 11 omp_get_thread_num §Returns the thread rank in a parallel region. §The rank of threads ranges from 0 to omp_get_num_threads() - 1.

12 12 To compile: icc -openmp myprog.c -o myprog Note: Logout of past sessions for compiler environment settings to take effect.

13 13 §Difference between front-end and compute nodes.

14 14 Numthreads before for-loop is=1 numprocs=4 Numthreads after for-loop is=4 I am thread=0, I have iteration=0 Numthreads after for-loop is=4 I am thread=0, I have iteration=1 Numthreads after for-loop is=4 I am thread=0, I have iteration=8 Numthreads after for-loop is=4 I am thread=0, I have iteration=9 Numthreads after for-loop is=4 I am thread=1, I have iteration=2 Numthreads after for-loop is=4 I am thread=1, I have iteration=3 Numthreads after for-loop is=4 I am thread=2, I have iteration=4 Numthreads after for-loop is=4 I am thread=2, I have iteration=5 Numthreads after for-loop is=4 I am thread=3, I have iteration=6 Numthreads after for-loop is=4 I am thread=3, I have iteration=7

15 15 void omp_set_num_threads (int t) §It uses parameter value to set the number of threads to be active in parallel sections of code. §We have the ability to tailor the level of parallelism. §call omp_set_num_threads prior to the beginning of a parallel region for it to take effect; §The result is undefined if this subroutine is called within a parallel region.

16 16 #include int main(void){ int i,tid, size=10; omp_set_num_threads(4); #pragma omp parallel for private(tid) schedule(static,2) for(i=0; i<size; i++){ tid = omp_get_thread_num(); printf("I am thread=%d, I have iteration=%d\n", tid, i); } return 0; }

17 17 I am thread=0, I have iteration=0 I am thread=0, I have iteration=1 I am thread=0, I have iteration=8 I am thread=0, I have iteration=9 I am thread=1, I have iteration=2 I am thread=1, I have iteration=3 I am thread=2, I have iteration=4 I am thread=2, I have iteration=5 I am thread=3, I have iteration=6 I am thread=3, I have iteration=7

18 18 #include int main(void){ int i,tid, size=10; #pragma omp parallel for private(tid) schedule(static,2) num_threads(4) for(i=0; i<size; i++){ tid = omp_get_thread_num(); printf("I am thread=%d, I have iteration=%d\n", tid, i); } return 0; }

19 19 What is wrong here? double area, pi, x; int i,n; //.... area = 0.0; #pragma omp parallel for private(x) for (i=0; i<n; i++){ x=(i+0.5)/n; area+=4.0/(1.0+x*x); } pi=area/n;

20 20 What is wrong here? double area, pi, x; int i,n; //.... area = 0.0; #pragma omp parallel for private(x) for (i=0; i<n; i++){ x=(i+0.5)/n; area+=4.0/(1.0+x*x); // Race Condition } pi=area/n;

21 21 double area, pi, x; int i,n; //.... area = 0.0; #pragma omp parallel for private(x) for (i=0; i<n; i++){ x=(i+0.5)/n; #pragma omp critical area+=4.0/(1.0+x*x); } pi=area/n;

22 22 double area, pi, x; int i,n; //.... area = 0.0; #pragma omp parallel for private(x) for (i=0; i<n; i++){ x=(i+0.5)/n; #pragma omp critical area+=4.0/(1.0+x*x); } pi=area/n; This can affect speedup.

23 23 for(i=1; i<=n; i++){ sum = sum + a[i]; }

24 24 #pragma omp parallel for reduction(+:sum) for(i=1; i<=n; i++){ sum = sum + a[i]; }

25 25 Different reduction operations and initial values + 0 -0 *1 &all bits 1 |0 ^0 &&1 ||0

26 26 double area, pi, x; int i,n; //.... area = 0.0; #pragma omp parallel for private(x) reduction (+:area) for (i=0; i<n; i++){ x=(i+0.5)/n; area+=4.0/(1.0+x*x); } pi=area/n;

27 27 Conditional execution of loops double area, pi, x; int i,n; //.... area = 0.0; #pragma omp parallel for private(x) reduction (+:area) if(n>5000) for (i=0; i<n; i++){ x=(i+0.5)/n; area+=4.0/(1.0+x*x); } pi=area/n;

28 28 for(i=1; i<=n; i++) { myval = do_lots_of_work(i); printf("%d %d\n", i, myval); }

29 29 #pragma omp parallel for private(myval) ordered for(i=1; i<=n; i++) { myval = do_lots_of_work(i); #pragma omp ordered { printf("%d %d\n", i, myval); } Note: The opening curly brace may not appear on the same line as the ordered directive.

30 30 for (i=0; i<BLOCK_SIZE(id,p,n); i++) for(j=0; j<n; j++) a[i][j]=MIN(a[i][j], a[i][k]+tmp[j]); §If we parallelize inner loop what would happen?

31 31 for (i=0; i<BLOCK_SIZE(id,p,n); i++) for(j=0; j<n; j++) a[i][j]=MIN(a[i][j], a[i][k]+tmp[j]); §fork/join overhead for every iteration of outer loop. §If we parallelize outer loop we only incur fork/join overhead once.

32 32 #pragma omp parallel for for (i=0; i<BLOCK_SIZE(id,p,n); i++) for(j=0; j<n; j++) a[i][j]=MIN(a[i][j], a[i][k]+tmp[j]);

33 33 #pragma omp parallel for for (i=0; i<BLOCK_SIZE(id,p,n); i++) for(j=0; j<n; j++) a[i][j]=MIN(a[i][j], a[i][k]+tmp[j]); Problem here!

34 34 #pragma omp parallel for private(j) for (i=0; i<BLOCK_SIZE(id,p,n); i++) for(j=0; j<n; j++) a[i][j]=MIN(a[i][j], a[i][k]+tmp[j]);

35 35 Scheduling loops §n is the number of iterations and t is the number of threads schedule (static) l Static allocation of about n/t contiguous iterations to each thread. schedule (static, C) l Allocation of chunks to tasks. Each chunk contains C contiguous iterations. Assigned in round-robin fashion. schedule (dynamic) l Iterations are dynamically allocated, one at a time, to threads.

36 36 Scheduling loops schedule (dynamic, C) Iterations are dynamically allocated, C iterations at a time, to threads. schedule (guided, C) l Also called guided self scheduling. The first chunk is an implementation dependent size and each successive chunk is a fixed fraction of preceding chunk until the minimum chunk size C is reached. schedule (guided) Same as above, C is taken to be 1 schedule (runtime) The schedule type is chosen at runtime based on value of environment variable OMP_SCHEDULE e.g. export OMP_SCHEDULE=“static,1”

37 37 In OpenMP, there are two main approaches for assigning work to threads: Loop-level Parallel regions §In the first approach, loop-level, individual loops are parallelized with each thread being assigned a unique range of the loop index. §In parallel regions, any sections of the code can be parallelized, not just loops. l The work within the parallel regions is explicitly distributed among the threads using the unique identifier assigned to each thread. l This can be done by using if statements, e.g., if(mythreadid == 0) …

38 38 §In the loop-level approach, execution starts on a single thread. Then, when a parallel loop is encountered, multiple threads are spawned. When the parallel loop is finished, the extra threads are discarded and the execution is once again serial until the next parallel loop. §In the parallel-regions approach, multiple threads are maintained, irrespective of whether or not loops are encountered.

39 39 §When using the parallel directive that the entire region of code between within braces will be duplicated on all threads. §This allows more flexibility than restricting and we can parallelize code in a manner much like that used with MPI.

40 40 #pragma omp parallel for for(i=1; i<=maxi; i++) { a(i) = b(i); } #pragma omp parallel #pragma omp for for(i=1; i<=maxi; i++) { a(i) = b(i); }

41 41 #include int main(void){ int i,tid, numthreads, size=10; #pragma omp parallel for private(tid) schedule(static,2) for(i=0; i<size; i++){ numthreads = omp_get_num_threads(); tid = omp_get_thread_num(); printf("Numthreads after for-loop is=%d\n", numthreads); printf("I am thread=%d, I have iteration=%d\n", tid, i); } return 0; }

42 42 #include int main(void){ int i,tid, numthreads, size=10; #pragma omp parallel private(tid) { numthreads = omp_get_num_threads(); tid = omp_get_thread_num(); printf("Numthreads after for-loop is=%d\n", numthreads); #pragma omp for schedule(static,2) for(i=0; i<size; i++){ printf("I am thread=%d, I have iteration=%d\n", tid, i); } return 0; }

43 43 Numthreads after for-loop is=4 I am thread=0, I have iteration=0 I am thread=0, I have iteration=1 I am thread=0, I have iteration=8 I am thread=0, I have iteration=9 Numthreads after for-loop is=4 I am thread=1, I have iteration=2 I am thread=1, I have iteration=3 Numthreads after for-loop is=4 I am thread=3, I have iteration=6 I am thread=3, I have iteration=7 I am thread=2, I have iteration=4 I am thread=2, I have iteration=5

44 44 #pragma omp parallel { #pragma omp for for(i=1; i<=maxi; i++){ a[i] = b[i]; } #pragma omp for for(j=1; j<=maxj; j++){ c[j] = d[j]; } Advantages when there are multiple loops

45 45 §There is an implied barrier at the end of a loop with for directive. §If a barrier is not desired, the nowait clause can be used.

46 46 #pragma omp parallel { #pragma omp for nowait for(i=1; i<=maxi; i++){ a[i] = b[i]; } #pragma omp for for(j=1; j<=maxj; j++){ c[j] = d[j]; }

47 47 §In the loop-level approach, domain decomposition is performed automatically by distributing loop indices among the threads. §In the parallel regions approach, domain decomposition is performed manually.

48 48 #pragma omp parallel private(myid,istart,iend,nthreads,nper) { nthreads = omp_get_num_threads(); nper = imax/nthreads; myid = omp_get_thread_num(); istart = myid*nper + 1; iend = istart + nper - 1; do_work(istart,iend); for(i=istart; i<=iend; i++) a(i) = b(i)*c(i) } The size of the arrays is imax, and nper is the number of indices per thread.

49 49 §Master /slave programming in message passing model. §The shared memory model allows each thread to access the list of tasks, so there is no need for a separate master thread.

50 50 pseudo-code int main(){ struct task_struct task_ptr; … task_ptr=get_next_task(); while(task_ptr != NULL){ complete_task(task_ptr); task_ptr = get_next_task() } … }

51 51 int main(){ struct task_struct task_ptr; … #pragma omp parallel private (task_ptr) { task_ptr=get_next_task(); while(task_ptr != NULL){ complete_task(task_ptr); task_ptr = get_next_task() } … } task_struct get_next_task() { #pragma omp critical { // here shared linked-list is modified. }

52 52 SELF-TEST §Example 7.11 §Example 7.12

53 53 SELF TEST: Matrix Multiplication /* static scheduling of matrix multiplication loops */ #pragma omp parallel default(private) shared (a, b, c, dim) num_threads(4) #pragma omp for schedule(static) for (i = 0; i < dim; i++) { for (j = 0; j < dim; j++) { c(i,j) = 0; for (k = 0; k < dim; k++) { c(i,j) += a(i, k) * b(k, j); }

54 54 v=alpha(); w=beta(); x=gamma(v,w); y=delta(); epsilon(x,y); alphabeta gamma epsilon delta

55 55  parallel sections pragma precedes a block of k blocks of code that may be executed concurrently by k threads.  section pragma is within the encompassing parallel sections block and identifies individual blocks in it. §There is an implied barrier at end of sections.

56 56 #pragma omp parallel sections { #pragma omp section /*optional pragma*/ v=alpha(); #pragma omp section w=beta(); #pragma omp section y=delta(); } x=gamma(v,w); epsilon(x,y); alphabeta gamma epsilon delta

57 57 #pragma omp parallel { #pragma omp sections { #pragma omp section /*optional pragma*/ v=alpha(); #pragma omp section w=beta(); } #pragma omp sections { #pragma omp section /*optional pragma*/ x=gamma(v,w); #pragma omp section y=delta(); } epsilon(x,y); alphabeta gamma epsilon delta

58 58 #pragma omp parallel { #pragma omp sections { #pragma omp section /*optional pragma*/ v=alpha(); #pragma omp section w=beta(); } #pragma omp sections { #pragma omp section /*optional pragma*/ x=gamma(v,w); #pragma omp section y=delta(); } epsilon(x,y); alphabeta gamma epsilon delta Better if only two processors are available.

59 59 §#pragma omp single l For example, for printing error messages §#pragma omp master §omp_set_dynamic §OMP_DYNAMIC


Download ppt "1 Friday, November 10, 2006 “ Programs for sale: Fast, Reliable, Cheap: choose two.” -Anonymous."

Similar presentations


Ads by Google