Download presentation
Presentation is loading. Please wait.
1
CS 140 Lecture 4 Professor CK Cheng Tuesday 5/08/02
2
Part I. Combinational Logic –Implementation K-map
3
4-variable K-maps Id a b c d f (a,b,c,d) 0 0 0 1 0 0 0 1 0 2 0 0 1 0 1 3 0 0 1 1 1 4 0 1 0 0 0 5 0 1 0 1 0 6 0 1 1 0 1 7 0 1 1 1 1 8 1 0 0 0 0 9 1 0 0 1 0 10 1 0 1 0 1 11 1 0 1 1 1 12 1 1 0 0 0 13 1 1 0 1 0 14 1 1 1 0 1 15 1 1 1 1 1
4
Corresponding K-map f (a, b, c, d) = c d a c b 0 0 1 1 0 1 3 2 4 5 7 6 12 13 15 14 8 9 11 10
5
Another example w/ 4 bits: Id a b c d f (a,b,c,d) 0 0 0 0 0 1 1 0 0 0 1 1 2 0 0 1 0 1 3 0 0 1 1 0 4 0 1 0 0 0 5 0 1 0 1 0 6 0 1 1 0 0 7 0 1 1 1 0 8 1 0 0 0 1 9 1 0 0 1 - 10 1 0 1 0 - 11 1 0 1 1 0 12 1 1 0 0 0 13 1 1 0 1 0 14 1 1 1 0 1 15 1 1 1 1 0
6
Corresponding 4-variable K-map f (a, b, c, d) = b’c’ + b’d’ + acd’ d a c b 1 0 0 1 1 0 0 - 0 0 0 0 1 0 1 - 0 1 3 2 4 5 7 6 12 13 15 14 8 9 11 10
7
Boolean Expression K-Map Each Variable x i and its compliment x i ’ Two half planes Rx i, Rx i ’ divided by x i Each product term P ( Xi* e.g. b’c’) Intersection of Rx i * for all i P. (A rectangle e.g. Rb’ Rc’) Each minterm 1-cell Two minterms are adjacent if they differ by one and only one variable, eg: abc’d is adjacent to abc’d’ The two 1-cells are neighbors Each minterm has n adjacent minterms Each 1-cell has n neighbors U
8
ProcedureInput: Two sets of F R D 1)Draw K-map. 2)Expand all terms in F to their largest sizes (prime implicants). 3)Choose the essential prime implicants. 4)Try all combinations to find the minimal sum of products. (This is the most difficult step)
9
Example Given F = m (0, 1, 2, 8, 14) D = m (9, 10) 1. Draw K-map 0 1 3 2 4 5 7 6 12 13 15 14 8 9 11 10 d a c b 1 1 0 1 0 0 0 0 0 0 0 1 1 - 0 -
10
2. Prime Implicants: Largest rectangles that intersect On Set but not Off Set that correspond to product terms. m (0, 1, 2, 9), m (0, 2, 8, 10), m (10, 14) 3. Essential Primes: Prime implicants covering elements in F that are not covered by any other primes. m (0, 1, 8, 9), m (0, 2, 8, 10), m (10, 14) 4. Min exp: m (0, 1, 8, 9) + m (0, 2, 8, 10) + m (10, 14) f(a,b,c,d) = a’b’c’ + abc’ + b’cd (or a’b’d)
11
Another example Given F = m (0, 3, 4, 14, 15) D = m (1, 11, 13) 1. Draw K-map d a c b 1 - 1 0 1 0 0 0 0 - 1 1 0 0 - 0 0 1 3 2 4 5 7 6 12 13 15 14 8 9 11 10
12
2. Prime Implicants: Largest rectangles that intersect On Set but not Off Set that correspond to product terms. E.g. m (0, 4), m (0, 1), m (1, 3), m (3, 11), m (14, 15), m (11, 15), m (13, 15) 3. Essential Primes: Prime implicants covering elements in F that are not covered by any other primes. E.g. m (0, 4), m (14, 15) 4. Min exp: m (0, 4), m (14, 15), ( m (3, 11) or m (1,3) ) f(a,b,c,d) = a’b’c’ + abc’ + b’cd (or a’b’d)
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.