Download presentation
Presentation is loading. Please wait.
1
Diffuse supernova neutrinos at underground laboratories Cecilia Lunardini Arizona State University And RIKEN BNL Research Center INT workshop “Long-Baseline Neutrino Physics and Astrophysics”
2
Motivations Current status The future: –Detection potential –What can we learn? Extras: what else? C. Lunardini, arXiv:1007.3252 (review)
3
Diffuse neutrinos from all SNe Sum over the whole universe: Supernovae S. Ando and K. Sato, New J.Phys.6:170,2004.
4
Motivations Clip art from M. Vagins
5
Sooner and more Faster progress –Alternative to a galactic SN! ~20 events/yr/Mt everyday physics! New science –What’s typical ? –New/rare SN types –Cosmological Sne Physics in the 10-100 MeV window?
6
Current status
7
The “ingredients” Cosmological rate of supernovae Neutrino flux at production + Propagation effects: Oscillations Redshift …. Neutrino flux at production + Propagation effects: Oscillations Redshift …. Cosmology
8
Supernova rate R SN (z) ~R SN (0) (1+z) β, z<1 normalization uncertain This work: β=3.28, R SN (0) = 10 -4 Mpc -3 yr -1 Beacom & Hopkins, astro-ph/0601463 From Star Formation Rate From SN data
9
Original spectra Models: –Lawrence Livermore –Thompson, Burrows, Pinto (Arizona) –Keil, Raffelt, Janka (Garching) 3 10 53 ergs, equipartitioned between 6 species Keil,, Raffelt,Janka, 2003 Astrophys. J. 590 971 x=μ, τ
10
Flavor oscillations Self-interaction + MSW (H) + MSW (L) –Spectral swap Depend on θ 13 and hierarchy –Normal (inverted): ∆m 2 31 >0 (∆m 2 31 <0) Jumping probability, P H Duan, Fuller, Quian, PRD 74, 2006 C.L. & A. Y. Smirnov, JCAP 0306, 2003
11
p= 0 – 0.32, p = 0 – 0.68 Chakraborty et al., hep-ph/08053131 Higher energy tail
12
DSNnF spectrum Exponential decay with E LL TBPKRJ C.L., in preparation
13
Upper limits and backgrounds Energy window SuperKamiokande (Malek et al., PRL, 2003): Red dashed: Homestake Solid, grey: Kamioka
14
anti- e flux: predictions C.L., Astropart.Phys.26:190-201,2006
15
The future: detection potential
16
Detection technologymassReactionEnergy window Events/( 5 yrs) Water Cherenkov 0.4 MtAnti-nue, inverse beta, (90% eff.) 19 – 40 MeV27 - 227 Water + Gadolinium (GADZOOKS) 0.0225 MtAnti-nue, inverse beta (90% eff.) 11 – 40 MeV4 - 17 Liquid Argon0.1 Mtnue + Ar, CC (100% eff.) 19 – 40 MeV6 – 28 Liquid Scintillator (LENA) 50 ktAnti-nue, inverse beta (100% eff.) 11 – 40 MeVO(10)
17
Water Energy window Background/signal ~ 5 -6 (at Kamioka) Fogli et al., JCAP 0504, 002, 2005 Background/signal ~ 5 -6 (at Kamioka) Fogli et al., JCAP 0504, 002, 2005 Bulk of events missed Large statistics: ~ 1- 2 events/MeV/yr
18
GADZOOKS Energy window Background/signal<1 Invisible muons reduced to 1/5 Beacom & Vagins, PRL93, 2004 Background/signal<1 Invisible muons reduced to 1/5 Beacom & Vagins, PRL93, 2004 Larger energy window: Bulk of events captured! Larger energy window: Bulk of events captured! Modest statistics… Scaling to Mt??
19
LAr Energy window Background/signal ~ 0.2- 0.3 Bulk of events may be captured! Statistics modest: ~0.2 events/yr/MeV Scaling? Statistics modest: ~0.2 events/yr/MeV Scaling? C.L., in preparation
20
What can we learn?
21
Water+Gd: effective spectrum Normalized to 150 events, =3.28 C.L., Phys.Rev.D75:073022,2007
22
A step beyond SN1987A! Test SN codes of spectra formation, some oscillation effects, etc. 0.1 Mt yr : –Tests part of parameter space –May not reach SN1987A region 0.1 Mt yr Yuksel, Ando and Beacom, Phys.Rev.C74:015803,2006
23
Chance to test r ~ 0.6 – 0.9 Normalized to 150 events C.L., Phys.Rev.D75:073022,2007
24
New SN types: failed SNe M > 40 Msun, 9-22% of all collapses Direct BH-forming collapse (no explosion): –Higher energies: E 0 ~ 20 – 24 MeV For all flavors Due to rapid contraction of protoneutron star before BH formation –Electron flavors especially luminous (e - and e + captures) Liebendörfer et al., ApJS, 150, 263, K. Sumiyoshi et al., PRL97, 091101 (2006), T. Fischer et al., (2008), 0809.5129, K. Nakazato et al., PRD78, 083014 (2008)
25
–Progenitor: M=40 M sun, from Woosley & Weaver, 1995 –“stiffer” eq. of state (EoS) more energetic neutrinos Shen et al. (S) EoS BH NS K. Nakazato et al., PRD78, 083014 (2008)
26
Number of events: water.. Best case scenario: 22% failed, S EoS Total Normal Failed C.L., arXiv:0901.0568, Phys. Rev. Lett., 2009, J. G. Keehn and C.L., in preparation
27
LAr Bulk of events from failed SNe captured Failed SN at least a 10% effect in energy window J. Keehn & C.L., in preparation Failed Normal Total
28
Reducing uncertainties Precise SN rates coming soon from astronomy Neutrino uncertainties more serious –SN modeling? –Galactic SN? http://snap.lbl.gov/ http://www.jwst.nasa.gov/ http://www.jwst.nasa.gov/,
29
C.L., Astropart.Phys.26:190-201,2006
30
Extras What else is there?
31
Neutrinos from solar flares? LSD: 27 flares examined in 3 years Mt-size advocated for detection Relic SN, 1 year Flare, best Flare,conservative Erofeeva et al., 1988; Bahcall PRL 1988 Kocharov et al., 1990, Fargion et al., 2008 Aglietta et al., 1990 Miroshnichenko et al., Space Science Reviews 91: 615–715, 2000
32
Solar antineutrinos Spin-flavor oscillations –ν e anti-ν e Rashba & Raffelt, Phys.Atom.Nucl.73:609-613,2010
33
Neutrinos from relic decay/annihilation χ ν + anti-ν χ+ χ ν + anti-ν Gamma rays Yuksel & Kistler, PRD, 2007 Palomares Ruiz & Pascoli, Phys.Rev.D77, 2008 Palomares Ruiz, Phys.Lett.B,2008
34
MeV Dark Matter absorption Kile and Soni, Phys.Rev.D80:115017,2009
35
Summary DSNnF may be seen with few years running! –100 kt LAr : O(10) events –0.4 Mt water : O(10 2 ) events New science: –Typical neutrino emission –Sensitive to failed Sne –Other physics in energy window? To advance further: –Resolve parameter degeneracies (theory) –reduce background at low E
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.