Presentation is loading. Please wait.

Presentation is loading. Please wait.

Practical Cryptography in High Dimensional Tori Marten van Dijk 1, Robert Granger 2, Dan Page 2, Karl Rubin 3, Alice Silverberg 3, Martijn Stam 2, David.

Similar presentations


Presentation on theme: "Practical Cryptography in High Dimensional Tori Marten van Dijk 1, Robert Granger 2, Dan Page 2, Karl Rubin 3, Alice Silverberg 3, Martijn Stam 2, David."— Presentation transcript:

1 Practical Cryptography in High Dimensional Tori Marten van Dijk 1, Robert Granger 2, Dan Page 2, Karl Rubin 3, Alice Silverberg 3, Martijn Stam 2, David Woodruff 1 MIT CSAIL, University of Bristol, UC Irvine

2 Outline 1.Application of Torus Cryptography 2.Goals of Torus Cryptography -Security -Efficiency -Space – Compression -Time – Exponentiations 3.Our Contribution 4.Implementation 5.Conclusion

3 Sample Application gbgb gaga b 2 Z q a 2 Z q Target: Secret key exchange over insecure channel Setting: Cyclic group G q µ F * p n of order q Key g ab

4 Outline 1.Application of Torus Cryptography 2.Goals of Torus Cryptography -Security -Efficiency -Space – Compression -Time – Exponentiations 3.Our Contribution 4.Implementation 5.Conclusion

5 Security Setting: G q µ F * p n How to choose G q ? Security: Can’t compute g ab from g a, g b (CDH) 1.Pollard  : log 2 q > 160 2.Index Calculus: n log 2 p > 1024 3.Pohlig-Hellman: G q not in proper subfield

6 Security: Pohlig-Hellman Setting: G q µ F * p n How to choose G q ? Pohlig-Hellman: G q not in proper subfield F * p n is cyclic of cardinality p n – 1 =  d | n  d (p),  d (p) is the d-th cyclotomic polynomial.  1 (p) = p-1,  2 (p) = p+1,  3 (p) = p 2 + p + 1,  6 (p) = p 2 – p + 1

7 Security: Pohlig-Hellman Setting: G q µ F * p n How to choose G q ? Pohlig-Hellman: G q not in proper subfield Example: |F * p 6 | = p 6 -1 = (p-1)(p+1)(p 2 +p+1)(p 2 -p+1) =  1 (p)  2 (p) ¢  3 (p) ¢  6 (p)  d (p) ¼ p  (d), where  (d) is Euler totient function

8 Security: Pohlig-Hellman Setting: G q µ F * p n How to choose G q ? Pohlig-Hellman: G q not in proper subfield [Lenstra]: If q |  n (p), q > n, then G q is not in a proper subfield. Order  n (p) subgroup is torus T n (F p ) Other tori: T 1 = {g 2 F * p n : g p-1 = 1} = F * p, T 2 = {g 2 F * p n : g p+1 = 1}, T d = {g 2 F * p n : g  d (p) = 1} for d | n Choose G q µ T n (F p )

9 Outline 1.Application of Torus Cryptography 2.Goals of Torus Cryptography -Security -Efficiency -Space – Compression -Time – Exponentiations 3.Our Contribution 4.Implementation 5.Conclusion

10 Efficiency: Communication - Represent G q with n log 2 p bits - But G q is much smaller! Can’t we do better? - We don’t know how to efficiently achieve log 2 q bits - We can achieve |T n (F p )| ¼  (n) log 2 p bits for some n LUC[LS], XTR [LV], CEILIDH [RS] Setting: G q µ T n (F p ) µ F * p n

11 Efficiency: Communication - Affine space A n (F p ) = n-tuples (g 1, …, g n ) 2 (F p ) n - LUC: T 2 (F p ) $ A 1 (F p ) - XTR: T 6 (F p ) $ A 2 (F p ) -CEILIDH: T n (F p ) $ A  (n) (F p ) if and only if n is a product of at most two prime powers - If n the product of at most two prime powers,  (n)/n >= 1/3 and this is achieved for n = 6. Setting: G q µ T n (F p ) µ F * p n

12 Efficiency: Communication Setting: G q µ T n (F p ) µ F * p n - Ideally want a map T n (F p ) $ A  (n) (F p ) for all n - [vdW]: 8 n, 9 m and a map T n (F p ) x A m (F p ) $ A m +  (n) (F p ) - But I thought we wanted a different type of map… nm 3032 210264 ……

13 Efficiency: Communication Setting: G q µ T n (F p ) µ F * p n Wanted: T n (F p ) $ A  (n) (F p ) Got: T n (F p ) x A m (F p ) A m +  (n) (F p ) - Is this useful? Yes! - If your application has m ¢ log p extra bits E to transmit or store, can compute  (g, E)   -1

14 Efficiency: Computation -[vDW]: T n (F p ) x A m $ A m +  (n) -Problem 1: m may be too large for applications -Problem 2: very computationally inefficient -[vDW]: Ask, can computation be reduced?

15 Outline 1.Application of Torus Cryptography 2.Goals of Torus Cryptography -Security -Efficiency -Space – Compression -Time – Exponentiations 3.Our Contribution 4.Implementation 5.Conclusion

16 Our Contribution Reduce m in the map T n (F p ) x A m $ A m +  (n) Better for more applications More computationally efficient Give the first implementation of T 30 (F p ) and show it is practical

17 Our Contribution Let n = 30. Our map is inspired by the equation:  30 (p) ¢  6 (p) =  6 (p 5 ) This suggests a mapping: T 30 (F p ) x T 6 (F p ) $ T 6 (F p5 ) We can represent T 6 (F p ) and T 6 (F p5 ) using CEILIDH! Get an “almost bijection” T 30 (F p ) x A 2 (F p ) $ A 10 (F p ) Affine surplus m = 2, instead of m = 32 in [vDW]

18 Our Contribution T 30 (F p ) x A 2 (F p ) T 30 (F p ) x T 6 (F p ) T 6 (F p 5 ) A 2 (F p 5 ) = A 10 (F p ) CEILIDH decompressionCRT CEILIDH compression

19 Applications Let’s compress two elements of T 30 (F p ) in different ways: Using CEILIDH, takes 20 p-ary symbols Using [vDW], takes 48 p-ary symbols Using our map, takes 8 + 10 = 18 p-ary symbols Obtain 10% ciphertext size reduction in ElGamal variants Our map: T 30 (F p ) x A 2 (F p ) $ A 10 (F p )

20 Our Contribution Also have T 210 x A 22 ! A 232 For n = 210, [vDW] had m = 264 Simplicity of map greatly improves computation For n = 30, Forward direction =1 multiplication + CEILIDH maps Reverse direction = 1 exponentiation + CEILIDH maps

21 Outline 1.Application of Torus Cryptography 2.Goals of Torus Cryptography -Security -Efficiency -Space – Compression -Time – Exponentiations 3.Our Contribution 4.Our Implementation 5.Conclusion

22 Parameter Selection We only consider T 30 (F p ) µ F * p 30 Using a Macintosh G5 dual 2.5GHz computer, we got: log 2 |G q |log 2 pSecurityHow long did it take us? 16032960-bit RSA~ 1 per minute 200641920-bit RSA~ 1 per hour

23 Timings T 6 (F p L )T 30 (F p S ) Compress.13 ms Decompress.19 ms4.9 ms T 6 (F p L )T 30 (F p S ) Binary5.21 ms9.12 ms Sliding Window4.39 ms7.53 ms p S -ary3.11 ms JSF single2.79 ms4.57 ms Timings based on log 2 (p L ) ¼ 5 log 2 (p S ), and G q with log 2 q ¼ 160 2.8 GHz Pentium 4 with 1GB of memory

24 Conclusion T 30 (F p ) crypto is practical! Compression outperforms existing schemes for as few as 2 elements The method is only slightly slower (2-3) than T 6 (F p 5 ) and XTR


Download ppt "Practical Cryptography in High Dimensional Tori Marten van Dijk 1, Robert Granger 2, Dan Page 2, Karl Rubin 3, Alice Silverberg 3, Martijn Stam 2, David."

Similar presentations


Ads by Google