Presentation is loading. Please wait.

Presentation is loading. Please wait.

Theory without small parameter: How should we proceed? Identify important physical principles and laws to constrain non-perturbative approximation schemes.

Similar presentations


Presentation on theme: "Theory without small parameter: How should we proceed? Identify important physical principles and laws to constrain non-perturbative approximation schemes."— Presentation transcript:

1 Theory without small parameter: How should we proceed? Identify important physical principles and laws to constrain non-perturbative approximation schemes –From weak coupling (kinetic) –From strong coupling (potential) Benchmark against “exact” (numerical) results. Check that weak and strong coupling approaches agree at intermediate coupling. Compare with experiment

2 Two-Particle Self-Consistent Approach (U < W) - How it works Vilk, AMT J. Phys. I France, 7, 1309 (1997); Allen et al.in Theoretical methods for strongly correlated electrons also cond-mat/0110130 (Mahan, third edition) General philosophy –Drop diagrams –Impose constraints and sum rules (No adjustable parameter) Conservation laws Pauli principle ( = ) Local moment and local density sum-rules Get for free: Mermin-Wagner theorem Kanamori-Brückner screening Consistency between one- and two-particle  G = U

3 Benchmarks

4 U > 0  = 5 8 X 8 QMC + cal.: Vilk et al. P.R. B 49, 13267 (1994) Notes: -F.L. parameters -Self also Fermi-liquid (0.0) (  (  Proof that it works (comparisons with QMC)

5 Calc.: Vilk et al. P.R. B 49, 13267 (1994) QMC: S. R. White, et al. Phys. Rev. 40, 506 (1989). A.-M. Daré, Y.M. Vilk and A.-M.S.T Phys. Rev. B 53, 14236 (1996) n=1

6 Double occupancy : Kyung et al. PRL 90, 099702 (2003), S. Moukouri and M. Jarrell, PRL 87, 167010 (2001)

7 Pseudogap vs DCA S. Moukouri and M. Jarrell, Phys. Rev. Lett. 87, 167010 (2001) B. Kyung, J. S. Landry, D. Poulin, and A.-M. S. Tremblay*, Phys. Rev. Lett. 90, 099702 (2003)

8 U = + 4  Calc. + QMC: Moukouri et al. P.R. B 61, 7887 (2000). Proofs... TPSC

9 U = + 4 Calc. + QMC: Moukouri et al. P.R. B 61, 7887 (2000).

10 Benchmark: d-wave superconductivity

11 QMC: symbols. Solid lines analytical Kyung, Landry, A.-M.S.T., Phys. Rev. B (2003)

12 QMC: symbols. Solid lines analytical Kyung, Landry, A.-M.S.T., Phys. Rev. B (2003)

13 QMC: symbols. Solid lines analytical. Kyung, Landry, A.-M.S.T. PRB (2003)

14 - - - - 1 2 3 4 - - +

15 Kyung, Landry, A.-M.S.T. PRB (2003) DCA Maier et al. cond-mat/0504529

16 Armitage et al. Phys. Rev. Lett. 87, 147003 (2001) M.B. Maple MRS Bulletin, June 1990 Electron doped:

17 Pseudogap near optimal doping in e- doped cuprates

18 TPSC U t  n  T d = 2 Hubbard model, simplest model of interacting electrons. Here U > 0 Weak coupling: U < 8t n Filling T Temperature t’= -0.175, t’’= +0.05, T=1/40 U t  n  T d = 2 Hubbard model, simplest model of interacting electrons. Here U > 0 Weak coupling: U < 8t n Filling T Temperature t’= -0.175, t’’= +0.05, T=1/40 U t  n  T d = 2 Hubbard model, simplest model of interacting electrons. Here U > 0 Weak coupling: U < 8t n Filling T Temperature t’= -0.175, t’’= +0.05, T=1/40 U t  n  T d = 2 Hubbard model, simplest model of interacting electrons. Here U > 0 Weak coupling: U < 8t n Filling T Temperature t’= -0.175, t’’= +0.05, T=1/40 U t  n  T d = 2 Hubbard model, simplest model of interacting electrons. Here U > 0 Weak coupling: U < 8t n Filling T Temperature t’= -0.175, t’’= +0.05, T=1/40 U t  n  T d = 2 Hubbard model, simplest model of interacting electrons. Here U > 0 Weak coupling: U < 8t n Filling T Temperature t’= -0.175, t’’= +0.05, T=1/40 U t  n  T d = 2 Hubbard model, simplest model of interacting electrons. Here U > 0 Weak coupling: U < 8t n Filling T Temperature t’= -0.175, t’’= +0.05, T=1/40 U t t’ t’’ Weak coupling U<8t t’=-0.175t, t’’=0.05t t=350 meV, T=200 K n=1+x – electron filling fixed

19 15% doping: EDCs along the Fermi surface TPSC Exp Hankevych, Kyung, A.-M.S.T., PRL, sept. 2004 U min < U< U max U max also from CPT Armitag e et al. PRL 87, 147003; 88, 257001

20 15% doped case: EDCs in two directions Exp TPSC Exp Hankevych, Kyung, A.-M.S.T., PRL (2004).

21 TPSC Hankevych, Kyung, A.-M.S.T., PRL, sept. 2004 EDCs along the Fermi surface TPSC Exp

22 Fermi surface plots be not too large increase for smaller doping Hubbard repulsion U has to… U=5.75 U=6.25 B.Kyung et al.,PRB 68, 174502 (2003) Hankevych, Kyung, A.-M.S.T., PRL, sept. 2004 15% 10%

23 Recent confirmation with KR slave-bosons Yuan, Yuan, Ting, cond-mat/0503056

24 Hot spots from AFM quasi-static scattering

25 AFM correlation length (neutron) Hankevych, Kyung, A.-M.S.T., PRL, (2004). Expt: P. K. Mang et al., PRL (2004), Matsuda (1992).

26 Pseudogap temperature and QCP  Δ PG ≈10k B T* comparable with optical measurements Hankevych, Kyung, A.-M.S.T., PRL 2004 : Expt: Y. Onose et al., PRL (2001). Prediction Matsui et al. PRL (2005) Verified theo.T* at x=0.13 with ARPES

27 Pseudogap temperature and QCP  Δ PG ≈10k B T* comparable with optical measurements Prediction QCP may be masked by 3D transitions Hankevych, Kyung, A.-M.S.T., PRL 2004 : Expt: Y. Onose et al., PRL (2001). Prediction  ξ≈ξ th at PG temperature T*, and ξ>ξ th for T<T* supports further AFM fluctuations origin of PG Prediction Matsui et al. PRL (2005) Verified theo.T* at x=0.13 with ARPES

28 Observation Matsui et al. PRL 94, 047005 (2005) Reduced, x=0.13 AFM 110 K, SC 20 K

29 Weak and strong-coupling mechanism for pseudogap, see poster by Hankevych, Kyung, Daré, Sénéchal, Tremblay

30 Steve Allen François Lemay David Poulin Hugo Touchette Yury Vilk Liang Chen Samuel Moukouri J.-S. Landry M. Boissonnault

31 Alexis Gagné-Lebrun Bumsoo Kyung A-M.T. Sébastien Roy Alexandre Blais D. Sénéchal C. Bourbonnais R. Côté K. LeHur Vasyl Hankevych Sarma Kancharla Maxim Mar’enko

32 C’est fini… enfin


Download ppt "Theory without small parameter: How should we proceed? Identify important physical principles and laws to constrain non-perturbative approximation schemes."

Similar presentations


Ads by Google