Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Thursday, June 15, 2006 Confucius says: He who play in root, eventually kill tree.

Similar presentations


Presentation on theme: "1 Thursday, June 15, 2006 Confucius says: He who play in root, eventually kill tree."— Presentation transcript:

1 1 Thursday, June 15, 2006 Confucius says: He who play in root, eventually kill tree.

2 2 telnet 203.128.0.236 instead of telnet chand.lums.edu.pk from outside LUMS

3 3 §Another example

4 4 FCFS §Simplest algorithm – easy to implement §When a running process blocks, it is placed at the end of queue like a newly arrived process §Non preemptive §Does not emphasize throughput – long processes are allowed to monopolize the CPU.

5 5 FCFS §Suffers from convoy effect l Penalizes short processes following long ones §Average WT varies if process CPU burst times vary greatly §Not suitable for time sharing systems §Tends to favor CPU bound over I/O bound processes

6 6 §Starvation possible §Throughput vs. turnaround time tradeoff §Introduces context switching. §Burst sizes known in advance and all available SRTN

7 7 Priority Scheduling §A priority number (integer) is associated with each process §The CPU is allocated to the process with the highest priority (smallest integer  highest priority... may be different on different systems ). l Preemptive l nonpreemptive §SJF is a priority scheduling where priority is the predicted next CPU burst time.

8 8 Example ProcessesBurst TimePriorityArrival Time P11030 P2111 P3232 P4143 P5524

9 9 Priority Scheduling §Problem  Starvation – low priority processes may never execute. §Solution  Aging – as time progresses increase the priority of the process.

10 10 Round Robin (RR) §Each process gets a small unit of CPU time (time quantum), usually 10-100 milliseconds. After this time has elapsed, the process is preempted and added to the end of the ready queue. §If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the CPU time in chunks of at most q time units at once. No process waits more than (n-1)q time units.

11 11 §Performance l q large  FIFO l q small  q must be large with respect to context switch, otherwise overhead is too high. Round Robin (RR)

12 12 Example: RR with Time Quantum = 20 ProcessBurst Time P 1 53 P 2 17 P 3 68 P 4 24 § Typically, higher average turnaround than SJF, but better response.

13 13 P1P1 P2P2 P3P3 P4P4 P1P1 P3P3 P4P4 P1P1 P3P3 P3P3 02037577797117121134154162 The Gantt chart is:

14 14 How a Smaller Time Quantum Increases Context Switches

15 15 Multilevel Queue §Ready queue is partitioned into separate queues: foreground (interactive) background (batch) §Each queue has its own scheduling algorithm l foreground – RR l background – FCFS

16 16 Multilevel Queue §Scheduling must be done between the queues l Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of starvation. l Time slice – each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e., 80% to foreground in RR l 20% to background in FCFS

17 17 Multilevel Queue Scheduling

18 18 Multilevel Feedback Queue §A process can move between the various queues; aging can be implemented this way

19 19 Multilevel Feedback Queue §Multilevel-feedback-queue scheduler defined by the following parameters: l number of queues l scheduling algorithms for each queue l method used to determine when to upgrade a process l method used to determine when to demote a process l method used to determine which queue a process will enter when that process needs service

20 20 Example of Multilevel Feedback Queue §Three queues: l Q 0 – RR with time quantum 8 milliseconds l Q 1 – RR time quantum 16 milliseconds l Q 2 – FCFS §Scheduling l A new job enters queue Q 0 which is served FCFS. When it gains CPU, job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q 1. l At Q 1 job is again served FCFS and receives 16 additional milliseconds. If it still does not complete, it is preempted and moved to queue Q 2.

21 21 Multilevel Feedback Queues

22 22 ProcessesArrival timeBurst time P1017 P21225 P3288 P43632 P54618 Multilevel feed back queue example

23 23 Multilevel feed back queue example §Multilevel feedback queue scheduling with three queues Q1, Q2, Q3. §The scheduler first executes processes in Q1, which is given a time quantum of 8ms. If a process does not finish within this time, it is moved to tail of Q2. §The scheduler executes processes in Q2 only if Q1 is empty. The process at the head of Q2 is given a quantum of 16ms. If it does not complete, it is preempted and put in Q3. §Processes in Q3 are run in FCFS basis, only when Q1 and Q2 are empty. §A process in Q1 will preempt a process in Q2, a process that arrives in Q2 will preempt a process in Q3.

24 24 User level thread with 50msec process quantum and threads that run 5msec per CPU burst THREAD SCHEDULING

25 25 User level thread with 50msec process quantum and threads that run 5msec per CPU burst

26 26 Kernel level thread with 50msec process quantum and threads that run 5msec per CPU burst

27 27 Kernel level thread with 50msec process quantum and threads that run 5msec per CPU burst

28 28 Threads §Goal for threads: Allow each to use blocking calls but prevent a blocked thread from affecting other threads. §Threads in user space: Conflict with this goal. §One compelling reason for threads in user space: Work with existing operating systems

29 29 Threads §System calls can be made non-blocking select system call checking code: jacket / wrapper l Changes to system call library l Inelegant solution l Conflict with our goal l Changing semantics of calls means changing existing user programs

30 30 We want: Combine the advantage of user threads with those of kernel threads. We want good performance and flexibility but without having to make special non- blocking system calls or checking for conditions.

31 31 Scheduler Activations Many to many models: User threads multiplexed onto kernel threads. Main idea: Avoid unnecessary transitions between user and kernel space If a thread a waiting locally for another one, then no need to involve the kernel Some number of virtual processors assigned to each process by the kernel (LWP: data structure between user and kernel threads)

32 32 Scheduler Activations Some number of virtual processors assigned to each process by the kernel (LWP: data structure between user and kernel threads) LWPs can be requested or released by each process User process can schedule user threads onto available virtual processors.

33 33 Scheduler Activations When a kernel sees that a thread has blocked it informs the process run-time system of this occurrence by starting it at a well known address (Upcall) Now the process can reschedule its threads. When the data for blocked thread becomes available kernel makes another upcall The process will decide whether to run the previously blocked thread or put it in ready queue.

34 34 Scheduler Activations CPU-bound: maybe one LWP I/O bound: multiple LWPs One LWP for each concurrent blocking system call

35 35 Thread Scheduling Many to many model: Thread library schedules user-level threads on available LWPs (PCS) Decision among threads of same process Kernel decides which kernel thread to schedule onto a CPU (SCS) One to one model systems use only SCS Windows, Linux, Solaris 9

36 36 Scheduling in Unix - other versions also possible §Designed to provide good response to interactive processes §Uses multiple queues §Each queue is associated with a range of non-overlapping priority values

37 37 Scheduling in Unix - other versions also possible §Processes executing in user mode have positive values §Processes executing in kernel mode (doing system calls) have negative values §Negative values have higher priority and large positive values have lowest

38 38 Scheduling in Unix §Only processes that are in memory and ready to run are located on queues §Scheduler searches the queues starting at highest priority §first process is chosen on that queue and started. It runs for one time quantum (say 100ms) or until it blocks. §If the process uses up its quantum it is blocked §Processes within same priority range share CPU in RR


Download ppt "1 Thursday, June 15, 2006 Confucius says: He who play in root, eventually kill tree."

Similar presentations


Ads by Google