Download presentation
Presentation is loading. Please wait.
2
Electric dipole moments : a search for new physics E.A. Hinds Manchester, 12 Feb 2004 Imperial College London
3
Fundamental inversions C particle antiparticle Pposition inverted T time reversed (Q -Q) (r -r) (t -t)
4
Symmetries Weak interactions are not symmetric under P or C normal matter - n, , - readily breaks C and P symmetry. The combination CP is different normal matter respects CP symmetry to a very high degree. Time reversal T is equivalent to CP (CPT theorem) normal matter respects T symmetry to a very high degree.
5
Electric dipole moment (EDM) breaks P and T symmetry P - + elementary particle + - spin edm (P no big deal) + - T + - (CP big deal)
6
Two motivations to measure EDMs EDM is effectively zero in standard model but big enough to measure in non-standard models direct test of physics beyond the standard model EDM violates T symmetry Deeply connected to CP violation and the matter-antimatter asymmetry of the universe
7
Experimental Limit on d (e.cm) 1960197019801990 neutron: electron: 2000 10 -20 10 -30 10 -22 10 -24 10 -26 10 -28 A bit of history
8
thallium atom/molecule level CP from particles to atoms (main connections) nuclear level NNNN Schiff moment mercury Higgs SUSY Left/Right Strong CP field theory CP model GG neutron nucleon level electron/quark level dede dqdcqdqdcq ~
9
The Mercury EDM experiment University of Washington, Seattle M.V. Romalis, W.C. Griffith, J.P. Jacobs, E.N. Fortson Nuclear spin polarised 199 Hg vapor in a double cell h = B + dE E - dE ± B ± measured optically
10
199 Hg EDM (10 -27 e.cm) GSI992 Hg edm result : Phys. Rev. Lett. 86, 2505 (2001) |d Hg | < 2.1 10 -28 e cm E = 9 kV/cm B = 1.5 T stable to 0.4 pT T coherence ~ 100 s Difference of precession frequencies gives 199 Hg EDM
11
The Neutron EDM Rutherford-Appleton Laboratory D Wark, P Iaydjiev, S Ivanov, S Balashov, M. Tucker Sussex University PG Harris, JM Pendlebury, D Shiers, M van der Grinten, K Zuber, K Green, m Hardiman, P Smith, J Grozier, J Karamath ILL P Geltenbort Ultracold neutrons in a bottle precess at frequency ( n B d n E)/ Reverse E to measure d n OXFORD H. Kraus N Jelley H Yoshiki KURE
12
GSI992 Neutron edm result : Phys. Rev. Lett. 82, 904 (1999) |d n |< 6.3 10 -26 e cm E = 4.5 kV/cm B = 1 T T coherence ~ 130 s Hg co-magnetometer (B is measured to 1 pT rms)
13
Aiming at 3 10 -28 e.cm over next decade Neutron: longer range plans Helium (ILL, LANL) Inside the helium Higher neutron density Higher E field New moderators using liquid helium or solid deuterium Deuterium (PSI, TU-Munich) Outside the deuterium Higher neutron density Bigger volume (fast moderation)
14
Implications of n and Hg for the theta parameter gs2gs2 32 GG ~ CP strong interaction d n 10 -16 6 10 -10 nn p × induces neutron EDM Baluni Crewther Pospelov Henley & Haxton Pospelov induces mercury Schiff moment N/N/ × N d Hg 1 10 -18 2 10 -10 Something (Peccei-Quinn?) makes very small!
15
Implications of Hg and n for SUSY quark electric dipole moments d q q (F i 5 ) q 2 1 qq gaugino squark quark color dipole moments qq g gaugino squark d q q (g s G i 5 ) q 2 1 c 2 mqmq d q, d q ~ (loop factor) sin CP c CP phase from soft breaking naturally O(1) scale of SUSY breaking naturally ~200 GeV naturally ~ d u,d, d u,d ~ 3 10 24 cm naturally c n and Hg experiments give d u < 2 10 25 d d < 5 10 26 d u < 3 10 26 d d < 3 10 26 c c ~ 100 times less! CP < 10 -2 ?? > 2 TeV ??
16
thallium atom/molecule level CP from particles to atoms (main connections) nuclear level NNNN Schiff moment mercury Higgs SUSY Left/Right Strong CP field theory CP model GG neutron nucleon level electron/quark level dede dqdcqdqdcq
17
And now for the electron………..
18
The Thallium EDM experiment Berkeley B.C. Regan, E.D. Commins, C.J. Schmidt and D. DeMille 2 Tl atomic beams = B polarise analyse ± dE E ± B The solution: add 2 more Tl beams going down 4 analyse polarise The solution: Add 4 Na beams for magnetometry 1st huge problem: motional interaction v E 2 nd huge problem: stray static magnetic fields
19
A beautiful feature of the method E electric field Interaction energy -d e E de de atom containing electron amplification -585 for Tl (Sandars)
20
Effective field = 72 MV/cm 585 ÷ 585 electron edm result : |d e |< 1.6 10 -27 e.cm E = 123 kV/cm B = 38 T T coherence = 2.4 ms Na co-magnetometer Final Tl result: PRL 88, 071805 (2002) |d Tl |< 9.4 10 -25 e.cm
21
Theoretical consequences of electron EDM SUSY electron edm ee selectron 2 meme d e ~ (loop) sin CP No direct contamination from problem - a pure new physics search ~ 5 10 25 cm This time natural SUSY is too big by 300 CP < 3 10 -3 ?? > 4 TeV ??
22
potentially 1000 more sensitive The Imperial experiment uses ytterbium fluoride molecules E.A. Hinds, B.E. Sauer, J.J. Hudson, P Condylis, M.R. Tarbutt, R. Darnley The future for electron EDM experiments polar molecules
23
(in Tl experiment was 72 MV/cm) 13 GV/cm First advantage of YbF: Huge effective field E Parpia Quiney Kozlov Titov
24
2nd advantage of YbF: No coupling v E to motional magnetic field and internuclear axis is coupled to E E E = 0 no motional systematic error electron spin is coupled to internuclear axis Yb + F-F-
25
1500K heater Mo crucible YbF beam mirror probe laser PMT Yb and AlF 3 mixture Forming and probing a YbF beam
26
The A-X 0-0 band bandhead at 552.1 nm 174 P(8) 174 Q(0) 174 P(9) 174 Q(1) 456 174 P(8) 174 Q(0) 174 P(9) 174 Q(1) 456 1357911151719 13 1357911151719 13 GHz 0.20.40.60.8 176 P(9) 174 Q(0) 172 P(8)
27
| -1 | +1 | 0 The lowest two levels of YbF in an electric field E -d e E +d e E Goal: to measure the splitting 2d e E X 2 + (N = 0,v = 0) F=1 F=0 170 MHz
28
Interferometer to measure 2d e E Phase difference = 2 ( B B+d e E)T/ E B Pump A-X Q(0) F=1 0 | -1 | +1 | 0 Split | -1 |+1 170 MHz pulse Probe A-X Q(0) F=0 0 ? Recombine 170 MHz pulse
29
B and E 1.5 m The Sussex molecular beam beam oven pump split recombine detect PMT
30
Part of the optical setup
31
The interferometer fringe Interference signal (kpps) Magnetic field B (nT) Phase difference = 2( B B+d e E)T/
32
Measuring the edm Applied magnetic field Detector count rate E B0B0 -E = 4d e ET/ -B 0 4d e ET/
33
E = 8 kV/cm B = 6 nT T coherence ~ 1 ms First YbF result: PRL 89, 023003 (2002) background fringe height coherence time d e (24 hrs data) 150kHz 1.5 kHz 1.5 ms < 3 10 -26 e cm Effective field = 13 GV/cm Limited by counting statistics Systematic error eliminated….
34
PMT dye laser 550 nm Supersonic YbF beam 10 bar Ar solenoid valve targetskimmer YAG laser 1064 or 532 nm 20 mJ in 10 ns delay generator scan Labview control and DAQ
35
0 200 400600 Laser offset frequency (MHz) 172 P(8) 176 P(9) 174 Q(0) 1500K thermal source 3 10 5 useful molecules per second 0 200 400600 Laser offset frequency (MHz) 174 Q(0) 172 P(8) 176 P(9) 10K supersonic source 3 10 7 useful molecules per second
36
Possible experiment with trapped molecules supersonic source decelerator pumpsplit trap ~ 1s E B recombineprobe interferometer
37
Projections for the future background fringe height coherence time d e in 1 day 2002 result 150kHz 1.5 kHz 1.5 ms 3 10 -26 e cm cold YbF beam 640kHz 160 kHz 1 ms 6 10 -28 e cm trapped molecules 40kHz 10 kHz 1 s 3 10 -30 e cm long time = narrow fringes
38
d(muon) 7×10 -19 Current status of EDMs d(neutron) 6×10 -26 d(proton) 6×10 -23 YbF expt cold molecules d(electron) 1.6×10 -27
39
Conclusion EDM measurements (especially cold molecules) have great potential to elucidate CP violation particle physics beyond the standard model matter/antimatter asymmetry of the universe some of the most fundamental issues in physics
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.