Download presentation
1
Many-body Electronic Structure of Actinides: A Dynamical Mean Field Perspective.
Kristjan Haule, Physics Department and Center for Materials Theory Rutgers University Collaborators: G.Kotliar, Ji-Hoon Shim, S. Savrasov Half Moon Bay
2
Overview DMFT in actinides and their compounds (Spectral density functional approach). Examples: Plutonium, Americium, Curium. Compounds: PuO2, PuAm Observables: Valence, Photoemission, and Optics, X-ray absorption Extensions of DMFT to clusters. Coherence in the Hubbard and t-J model New general impurity solver (continuous time QMC) developed (can treat clusters and multiplets)
3
Crossover: bad insulator to bad metal
Universality of the Mott transition Crossover: bad insulator to bad metal Critical point First order MIT Ni2-xSex V2O3 k organics 1B HB model (DMFT):
4
Coherence incoherence crossover in the 1B HB model (DMFT)
Phase diagram of the HM with partial frustration at half-filling M. Rozenberg et.al., Phys. Rev. Lett. 75, 105 (1995).
5
DMFT + electronic structure method
Basic idea of DMFT: reduce the quantum many body problem to a one site or a cluster of sites problem, in a medium of non interacting electrons obeying a self-consistency condition. (A. Georges et al., RMP 68, 13 (1996)). DMFT in the language of functionals: DMFT sums up all local diagrams in BK functional Basic idea of DMFT+electronic structure method (LDA or GW): For less correlated bands (s,p): use LDA or GW For correlated bands (f or d): with DMFT add all local diagrams Effective (DFT-like) single particle Spectrum consists of delta like peaks Spectral density usually contains renormalized quasiparticles and Hubbard bands
6
How good is single site DMFT for f systems?
L=0,S=7/2 J=7/2 Elements: f5 L=5,S=5/2 J=5/2 f6 L=3,S=3 J=0 Compounds: PuO2 PuAm
7
Overview of actinides Many phases
25% increase in volume between a and d phase Two phases of Ce, a and g with 15% volume difference
8
Overview of actinides? Trivalent metals with nonbonding f shell
Partly localized, partly delocalized f’s participate in bonding
9
Why is Plutonium so special?
Heavy-fermion behavior in an element Typical heavy fermions (large mass->small Tk Curie Weis at T>Tk) No curie Weiss up to 600K
10
Plutonium puzzle? Ga doping stabilizes d-Pu
at low T, lattice contraction Am doping -> lattice expansion Expecting unscreened moments! Does not happen!
11
Curium versus Plutonium
nf=6 -> J=0 closed shell (j-j: 6 e- in 5/2 shell) (LS: L=3,S=3,J=0) One hole in the f shell One more electron in the f shell Magnetic moments! (Curie-Weiss law at high T, Orders antiferromagnetically at low T) Small effective mass (small specific heat coefficient) Large volume No magnetic moments, large mass Large specific heat, Many phases, small or large volume
12
Can LDA+DMFT predict which material is magnetic and which is not?
Density functional based electronic structure calculations: All Cm, Am, Pu are magnetic in LDA/GGA LDA: Pu(m~5mB), Am (m~6mB) Cm (m~4mB) Exp: Pu (m=0), Am (m=0) Cm (m~7.9mB) Non magnetic LDA/GGA predicts volume up to 30% off. Treating f’s as core overestimates volume of d-Pu, reasonable volume for Cm and Am Can LDA+DMFT predict which material is magnetic and which is not?
13
Very strong multiplet splitting
Atomic multiplet splitting crucial N Atom F2 F4 F6 x 92 U 8.513 5.502 4.017 0.226 93 Np 9.008 5.838 4.268 0.262 94 Pu 8.859 5.714 4.169 0.276 95 Am 9.313 6.021 4.398 0.315 96 Cm 10.27 6.692 4.906 0.380 Increasing F’s an SOC
14
Starting from magnetic solution,
Curium develops antiferromagnetic long range order below Tc above Tc has large moment (~7.9mB close to LS coupling) Plutonium dynamically restores symmetry -> becomes paramagnetic cond-mat/
15
Multiplet structure crucial for correct Tk in Pu (~800K)
and reasonable Tc in Cm (~100K) Without F2,F4,F6: Curium comes out paramagnetic heavy fermion Plutonium weakly correlated metal
16
Valence histograms Density matrix projected to the atomic eigenstates of the f-shell (Probability for atomic configurations) Pu partly f5 partly f6 f electron fluctuates between these atomic states on the time scale t~h/Tk (femtoseconds) One dominant atomic state – ground state of the atom
17
Probe for Valence and Multiplet structure: EELS&XAS
Electron energy loss spectroscopy (EELS) or X-ray absorption spectroscopy (XAS) core valence 4d3/2 4d5/2 5f5/2 5f7/2 Excitations from 4d core to 5f valence A plot of the X-ray absorption as a function of energy Energy loss [eV] Core splitting~50eV 4d5/2->5f7/2 4d3/2->5f5/2 hv Core splitting~50eV Measures unoccupied valence 5f states Probes high energy Hubbard bands!
18
f-sumrule for core-valence conductivity
Similar to optical conductivity: Current: Expressed in core valence orbitals: The f-sumrule: can be expressed as Branching ration B=A5/2/(A5/2+A3/2) Energy loss [eV] Core splitting~50eV 4d5/2->5f7/2 4d3/2->5f5/2 B=B0 - 4/15<l.s>/(14-nf) B0~3/5 Branching ratio depends on: average SO coupling in the f-shell <l.s> average number of holes in the f-shell nf A5/2 area under the 5/2 peak B.T. Tole and G. van de Laan, PRA 38, 1943 (1988)
19
LDA+DMFT B=B0 - 4/15<l.s>/(14-nf)
[a] G. Van der Laan et al., PRL 93, (2004). [b] G. Kalkowski et al., PRB 35, 2667 (1987) [c] K.T. Moore et al., PRB 73, (2006). One measured quantity B, two unknowns Close to atom (IC regime) Itinerancy tends to decrease <l.s>
20
Optical conductivity 2p->5f 5f->5f Pu: similar to heavy fermions (Kondo type conductivity) Scale is large MIR peak at 0.5eV PuO2: typical semiconductor with 2eV gap, charge transfer
21
Pu-Am mixture, 50%Pu,50%Am Lattice expands -> Kondo collapse is expected Could Pu be close to f6 like Am? Inert shell can not account for large cv anomaly Large resistivity! Absence of preadge structure in XAS Our calculations suggest charge transfer Pu d phase stabilized by shift to mixed valence nf~5.2->nf~5.4 Hybridization decreases, but nf increases, Tk does not change significantly! f6: Shorikov, et al., PRB 72, (2005); Shick et al, Europhys. Lett. 69, 588 (2005). Pourovskii et al., Europhys. Lett. 74, 479 (2006).
22
A.Lindbaum, S. Heathman, K. Litfin, and Y. Méresse,
Americium f6 -> L=3, S=3, J=0 Mott Transition? "soft" phase f localized "hard" phase f bonding A.Lindbaum, S. Heathman, K. Litfin, and Y. Méresse, Phys. Rev. B 63, (2001) J.-C. Griveau, J. Rebizant, G. H. Lander, and G.Kotliar Phys. Rev. Lett. 94, (2005)
23
Large multiple effects:
Am within LDA+DMFT Large multiple effects: F(0)=4.5 eV F(2)=8.0 eV F(4)=5.4 eV F(6)=4.0 eV S. Y. Savrasov, K. Haule, and G. Kotliar Phys. Rev. Lett. 96, (2006)
24
Comparisson with experiment
Am within LDA+DMFT from J=0 to J=7/2 Comparisson with experiment V=V0 Am I V=0.76V0 Am III V=0.63V0 Am IV nf=6.2 nf=6 Exp: J. R. Naegele, L. Manes, J. C. Spirlet, and W. Müller Phys. Rev. Lett. 52, (1984) “Soft” phase not in local moment regime since J=0 (no entropy) Theory: S. Y. Savrasov, K. Haule, and G. Kotliar Phys. Rev. Lett. 96, (2006) "Hard" phase similar to a Ce or d Pu, Kondo physics due to hybridization, however, nf still far from Kondo regime
25
What is captured by single site DMFT?
Captures volume collapse transition (first order Mott-like transition) Predicts well photoemission spectra, optics spectra, total energy at the Mott boundary Antiferromagnetic ordering of magnetic moments, magnetism at finite temperature Branching ratios in XAS experiments, Dynamic valence fluctuations, Specific heat Gap in charge transfer insulators like PuO2
26
Beyond single site DMFT
What is missing in DMFT? Momentum dependence of the self-energy m*/m=1/Z Various orders: d-waveSC,… Variation of Z, m*,t on the Fermi surface Non trivial insulator (frustrated magnets) Non-local interactions (spin-spin, long range Columb,correlated hopping..) Present in cluster DMFT: Quantum time fluctuations Spatially short range quantum fluctuations Present in DMFT: Quantum time fluctuations
27
Optimal doping: Coherence scale seems to vanish
underdoped scattering at Tc optimally overdoped Tc
28
Multiplets correctly treated
New continuous time QMC, expansion in terms of hybridization General impurity problem Diagrammatic expansion in terms of hybridization D +Metropolis sampling over the diagrams k Contains all: “Non-crossing” and all crossing diagrams! Multiplets correctly treated Phys. Rev. B 75, (2007)
29
Very incoherent at optimal doping
Hubbard model self-energy on imaginary axis, 2x2 Far from Mott transition coherent Low frequency very different Close to Mott transition Very incoherent Optimal doping in the t-J model (d~0.16) has largest low energy self-energy Very incoherent at optimal doping Optimal doping in the Hubbard model (d~0.1) has largest low energy self-energy Very incoherent at optimal doping
30
Conclusions LDA+DMFT can describe interplay of lattice and electronic structure near Mott transition. Gives physical connection between spectra, lattice structure, optics,.... Allows to study the Mott transition in open and closed shell cases. In actinides and their compounds, single site LDA+DMFT gives the zero-th order picture 2D models of high-Tc require cluster of sites. Some aspects of optimally doped regime can be described with cluster DMFT on plaquette: Large scattering rate in normal state close to optimal doping
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.