Presentation is loading. Please wait.

Presentation is loading. Please wait.

Unit C: Analysing data characteristics 主要參考資料來源 : KPMG ACL 課程講義資料 PriceWaterHouseCooper ACL 課程講義資料 ACL Training Materials.

Similar presentations


Presentation on theme: "Unit C: Analysing data characteristics 主要參考資料來源 : KPMG ACL 課程講義資料 PriceWaterHouseCooper ACL 課程講義資料 ACL Training Materials."— Presentation transcript:

1 Unit C: Analysing data characteristics 主要參考資料來源 : KPMG ACL 課程講義資料 PriceWaterHouseCooper ACL 課程講義資料 ACL Training Materials

2 2 Situations when we would use data analysis ACL commands that allow us to perform data analysis: Data validity commands; Analysis of numeric fields and values; Analysis of non-numeric fields and values.

3 Analysing data characteristics Numeric fields

4 4 Analysing data characteristics ( 數值 ) Count Total Statistics Profile Stratify

5 5 Count Count - counts the number of records that meet the specified condition;

6 6 Total See if you can derive the total value of the invoices (ie voucher type ‘IN’) that were billed before 1997 可驗證資料之完整性

7 7 Total

8 8 PricewaterhouseCoopers

9 9 Statistics and Profile ( 統計分析 ) Statistics - returns a statistical summary of one or more numeric fields; Profile - returns similar but slightly less detailed information; Run the statistics command on the value field.

10 10 Statistics and Profile ( 統計分析 ) Total value of receivables $468,880.69 Average value $865.81 Positive values 609 records with value of $527,277.55 Negative values (probably credit notes) 161 records with value of $(58,396.86)

11 11 Stratify ( 數值分類 ) 可自行輸入  Min  及  Max  ,亦可由系統帶 出,  Interval  預設值 為 10 ,亦可由  Free  中 自行設定區間 。 可將欄位為數 字型態之資料 分類彙總。

12 12 Stratify ( 數值分類 )

13 13 Workshop C1 開啟 ap_trans 執行 Analyze/Stratify 若先執行 Statistic 則 Min 及 Max 會自動帶出 請問 InvoiceAmount 高於 10,000 元之筆數共有幾筆 區分 0,1000,3000,5000,7000 之區間

14 14 Workshop C2 任務: – 行銷部門請您協助,依下列單價區間的設計,將目前庫存存貨 歸類,並列示出各區間範圍內的交易筆數及庫存數小計。 (Inventory.fil) – 0.00 to 9.99 10.00 to 49.99 50.00 to 99.99 100.00 to 599.99 – 瞭解哪一個單價區間的庫存數量最多?

15 Analysing data characteristics Non-numeric fields PwC

16 16 Analysing data characteristics ( 非數值 ) Classify Age Summarise

17 17 Analysing data characteristics Using these commands we could: Group data into subsets and return relevant totals for these subsets: --> Group data in a payroll file into departments and return the total payroll value for each department; Perform ageing of records with date fields: --> Age a receivables file by intervals of 30 days to determine bad and doubtful debts.

18 18 Classify 可將鍵值為文字型態之資料 分類彙總,且可按種類別彙 總產生長條圖。 選擇欲列入分類計算的資料 欄位。 ( 須為數值型態 )

19 19 Classify

20 20 Age Performs ageing of records based upon a selected date field; 可自行設定 Cut - Off 的日 期,且可自訂區間

21 21 Age

22 22 Summarize 資料須先排序或索引 若為數值型態,則須使用 String 函數轉換,才能執行

23 23 Summarize Summarise The order that the Summarise On fields are selected is very important

24 24 Summarize

25 25 Workshop C3 經過了動之以情、誘之以利、脅之以暴,終於,您自 MIS 取得了整年度應收帳款的 交易檔 (AR.fil) 。 以下是應收帳款資料有效的交易型態: Invoice – IN Payment – PM Credit Notes – CN Transfer – TR 任務: – 請對各交易型態的交易金額小計後與會計部門的帳務資料核對;同時 ,也請瞭解每一交易型態最近發生日期以及其交易客戶為何。


Download ppt "Unit C: Analysing data characteristics 主要參考資料來源 : KPMG ACL 課程講義資料 PriceWaterHouseCooper ACL 課程講義資料 ACL Training Materials."

Similar presentations


Ads by Google