Download presentation
Presentation is loading. Please wait.
1
Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Leon Balents (UCSB) Eugene Demler (Harvard) Matthew Fisher (UCSB) Kwon Park (Maryland) Anatoli Polkovnikov (Harvard) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland)
2
Parent compound of the high temperature superconductors: Cu O La Band theory k Half-filled band of Cu 3d orbitals – ground state is predicted by band theory to be a metal. However, La 2 CuO 4 is a very good insulator
3
A Mott insulator Parent compound of the high temperature superconductors: Ground state has long-range spin density wave (Néel) order at wavevector K= ( )
4
A Mott insulator Parent compound of the high temperature superconductors: Ground state has long-range spin density wave (Néel) order at wavevector K= ( )
5
A Mott insulator Parent compound of the high temperature superconductors: Ground state has long-range spin density wave (Néel) order at wavevector K= ( )
6
Introduce mobile carriers of density by substitutional doping of out-of-plane ions e.g. First study magnetic transition in Mott insulators………….
7
Outline A.Magnetic quantum phase transitions in “dimerized” Mott insulators Landau-Ginzburg-Wilson (LGW) theory B.Mott insulators with spin S=1/2 per unit cell Berry phases, bond order, and the breakdown of the LGW paradigm C.Cuprate Superconductors Competing orders and recent experiments
8
A. Magnetic quantum phase tranitions in “dimerized” Mott insulators: Landau-Ginzburg-Wilson (LGW) theory: Second-order phase transitions described by fluctuations of an order parameter associated with a broken symmetry
9
TlCuCl 3 M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist, cond-mat/0309440.
10
S=1/2 spins on coupled dimers Coupled Dimer Antiferromagnet M. P. Gelfand, R. R. P. Singh, and D. A. Huse, Phys. Rev. B 40, 10801-10809 (1989). N. Katoh and M. Imada, J. Phys. Soc. Jpn. 63, 4529 (1994). J. Tworzydlo, O. Y. Osman, C. N. A. van Duin, J. Zaanen, Phys. Rev. B 59, 115 (1999). M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev. B 65, 014407 (2002).
12
Weakly coupled dimers
13
Paramagnetic ground state
14
Weakly coupled dimers Excitation: S=1 triplon
15
Weakly coupled dimers Excitation: S=1 triplon
16
Weakly coupled dimers Excitation: S=1 triplon
17
Weakly coupled dimers Excitation: S=1 triplon
18
Weakly coupled dimers Excitation: S=1 triplon
19
Weakly coupled dimers Excitation: S=1 triplon Energy dispersion away from antiferromagnetic wavevector (exciton, spin collective mode)
20
TlCuCl 3 N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, H.-U. Güdel, K. Krämer and H. Mutka, Phys. Rev. B 63 172414 (2001). “triplon” K. Damle and S. Sachdev, Phys. Rev. B 57, 8307 (1998) This result is in good agreement with observations in CsNiCl 3 (M. Kenzelmann, R. A. Cowley, W. J. L. Buyers, R. Coldea, M. Enderle, and D. F. McMorrow Phys. Rev. B 66, 174412 (2002)) and Y 2 NiBaO 5 (G. Xu, C. Broholm, G. Aeppli, J. F. DiTusa, T.Ito, K. Oka, and H. Takagi, preprint).
21
Coupled Dimer Antiferromagnet
22
close to 1 Weakly dimerized square lattice
23
close to 1 Weakly dimerized square lattice Excitations: 2 spin waves (magnons) Ground state has long-range spin density wave (Néel) order at wavevector K= ( )
24
TlCuCl 3 J. Phys. Soc. Jpn 72, 1026 (2003)
25
1 Néel state T=0 Pressure in TlCuCl 3 Quantum paramagnet c = 0.52337(3) M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev. B 65, 014407 (2002) The method of bond operators (S. Sachdev and R.N. Bhatt, Phys. Rev. B 41, 9323 (1990)) provides a quantitative description of spin excitations in TlCuCl 3 across the quantum phase transition (M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist, Phys. Rev. Lett. 89, 077203 (2002))
26
1 T=0 in cuprates Quantum paramagnet c = 0.52337(3) M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev. B 65, 014407 (2002) Magnetic order as in La 2 CuO 4 Electrons in charge-localized Cooper pairs The method of bond operators (S. Sachdev and R.N. Bhatt, Phys. Rev. B 41, 9323 (1990)) provides a quantitative description of spin excitations in TlCuCl 3 across the quantum phase transition (M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist, Phys. Rev. Lett. 89, 077203 (2002)) Néel state
27
LGW theory for quantum criticality S. Chakravarty, B.I. Halperin, and D.R. Nelson, Phys. Rev. B 39, 2344 (1989)
28
LGW theory for quantum criticality A.V. Chubukov, S. Sachdev, and J.Ye, Phys. Rev. B 49, 11919 (1994) S. Chakravarty, B.I. Halperin, and D.R. Nelson, Phys. Rev. B 39, 2344 (1989)
29
B. Mott insulators with spin S=1/2 per unit cell: Berry phases, bond order, and the breakdown of the LGW paradigm
30
Mott insulator with two S=1/2 spins per unit cell
31
Mott insulator with one S=1/2 spin per unit cell
33
Destroy Neel order by perturbations which preserve full square lattice symmetry e.g. second-neighbor or ring exchange. The strength of this perturbation is measured by a coupling g.
34
Mott insulator with one S=1/2 spin per unit cell Destroy Neel order by perturbations which preserve full square lattice symmetry e.g. second-neighbor or ring exchange. The strength of this perturbation is measured by a coupling g.
35
Mott insulator with one S=1/2 spin per unit cell
46
Resonating valence bonds Resonance in benzene leads to a symmetric configuration of valence bonds (F. Kekulé, L. Pauling) P. Fazekas and P.W. Anderson, Phil Mag 30, 23 (1974); P.W. Anderson 1987 Such states are associated with non-collinear spin correlations, Z 2 gauge theory, and topological order. N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991); X. G. Wen, Phys. Rev. B 44, 2664 (1991).
47
Excitations of the paramagnet with non-zero spin
52
S=1/2 spinons,, are confined into a S=1 triplon,
53
Excitations of the paramagnet with non-zero spin S=1/2 spinons,, are confined into a S=1 triplon,
54
Excitations of the paramagnet with non-zero spin S=1/2 spinons,, are confined into a S=1 triplon,
55
Excitations of the paramagnet with non-zero spin S=1/2 spinons,, are confined into a S=1 triplon,
56
Excitations of the paramagnet with non-zero spin S=1/2 spinons,, are confined into a S=1 triplon, S=1/2 spinons can propagate independently across the lattice
57
Quantum theory for destruction of Neel order Ingredient missing from LGW theory: Spin Berry Phases
58
Quantum theory for destruction of Neel order Ingredient missing from LGW theory: Spin Berry Phases
59
Quantum theory for destruction of Neel order
60
Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points a
61
Quantum theory for destruction of Neel order Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points a
62
Quantum theory for destruction of Neel order Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points a S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)
63
Quantum theory for destruction of Neel order Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points a S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)
64
Quantum theory for destruction of Neel order Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points a S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)
65
Quantum theory for destruction of Neel order Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points a S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)
66
Quantum theory for destruction of Neel order Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points a S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002) Change in choice of is like a “gauge transformation”
67
Quantum theory for destruction of Neel order Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points a S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002) Change in choice of is like a “gauge transformation” The area of the triangle is uncertain modulo 4 and the action has to be invariant under
68
Quantum theory for destruction of Neel order Ingredient missing from LGW theory: Spin Berry Phases Sum of Berry phases of all spins on the square lattice.
69
Partition function on cubic lattice LGW theory: weights in partition function are those of a classical ferromagnet at a “temperature” g Quantum theory for destruction of Neel order
70
Partition function on cubic lattice Modulus of weights in partition function: those of a classical ferromagnet at a “temperature” g Quantum theory for destruction of Neel order S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)
71
Simplest large g effective action for the A a N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). S. Sachdev and R. Jalabert, Mod. Phys. Lett. B 4, 1043 (1990). S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)
72
Ordering by quantum fluctuations
81
g Phase diagram of S=1/2 square lattice antiferromagnet T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, Science 303, 1490 (2004). or
82
A. W. Sandvik, S. Daul, R. R. P. Singh, and D. J. Scalapino, Phys. Rev. Lett. 89, 247201 (2002) Bond order in a frustrated S=1/2 XY magnet g= First large scale (> 8000 spins) numerical study of the destruction of Neel order in a S=1/2 antiferromagnet with full square lattice symmetry
83
Mott insulators with spin S=1/2 per unit cell: Berry phases, bond order, and the breakdown of the LGW paradigm Order parameters/broken symmetry + Emergent gauge excitations, fractionalization.
84
C. Cuprate superconductors: Competing orders and recent experiments
85
Magnetic Mott Insulator Magnetic Superconductor Paramagnetic Mott Insulator Superconductor Quantum phase transitions High temperature superconductor
86
Magnetic Mott Insulator Magnetic Superconductor Paramagnetic Mott Insulator Superconductor Quantum phase transitions Spirals……Shraiman, Siggia Stripes……..Zaanen, Kivelson….. High temperature superconductor
87
Magnetic Mott Insulator Paramagnetic Mott Insulator Quantum phase transitions
88
Magnetic Mott Insulator Paramagnetic Mott Insulator Quantum phase transitions g La 2 CuO 4 or
89
g La 2 CuO 4 or Hole density Large N limit of a theory with Sp(2N) symmetry: yields existence of bond order and d-wave superconductivity S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991); M. Vojta and S. Sachdev, Phys. Rev. Lett. 83, 3916 (1999); M. Vojta, Phys. Rev. B 66, 104505 (2002). Localized holes
90
Magnetic, bond and super-conducting order g La 2 CuO 4 or Hole density Large N limit of a theory with Sp(2N) symmetry: yields existence of bond order and d-wave superconductivity S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991); M. Vojta and S. Sachdev, Phys. Rev. Lett. 83, 3916 (1999); M. Vojta, Phys. Rev. B 66, 104505 (2002). Localized holes
91
J. M. Tranquada, H. Woo, T. G. Perring, H. Goka, G. D. Gu, G. Xu, M. Fujita, and K. Yamada, cond-mat/0401621 Neutron scattering measurements of La 15/8 Ba 1/8 CuO 4 (Zurich oxide) x y
92
J. M. Tranquada, H. Woo, T. G. Perring, H. Goka, G. D. Gu, G. Xu, M. Fujita, and K. Yamada, cond-mat/0401621 Neutron scattering measurements of La 15/8 Ba 1/8 CuO 4 (Zurich oxide) x y A. T. Boothroyd, D. Prabhakaran, P. G. Freeman, S.J.S. Lister, M. Enderle, A. Hiess, and J. Kulda, Phys. Rev. B 67, 100407 (2003). La 5/3 Sr 1/3 NiO 4
93
J. M. Tranquada, H. Woo, T. G. Perring, H. Goka, G. D. Gu, G. Xu, M. Fujita, and K. Yamada, cond-mat/0401621 Neutron scattering measurements of La 15/8 Ba 1/8 CuO 4 (Zurich oxide) x y A. T. Boothroyd, D. Prabhakaran, P. G. Freeman, S.J.S. Lister, M. Enderle, A. Hiess, and J. Kulda, Phys. Rev. B 67, 100407 (2003). La 5/3 Sr 1/3 NiO 4 Spin waves: J=15 meV, J’=7.5meV
94
J. M. Tranquada, H. Woo, T. G. Perring, H. Goka, G. D. Gu, G. Xu, M. Fujita, and K. Yamada, cond-mat/0401621 x y A. T. Boothroyd, D. Prabhakaran, P. G. Freeman, S.J.S. Lister, M. Enderle, A. Hiess, and J. Kulda, Phys. Rev. B 67, 100407 (2003). La 5/3 Sr 1/3 NiO 4 Spin waves: J=15 meV, J’=7.5meV Neutron scattering measurements of La 15/8 Ba 1/8 CuO 4 (Zurich oxide)
95
J. M. Tranquada, H. Woo, T. G. Perring, H. Goka, G. D. Gu, G. Xu, M. Fujita, and K. Yamada, cond-mat/0401621 Observations in La 15/8 Ba 1/8 CuO 4 are very different and do not obey spin-wave model. Similar spectra are seen in most hole-doped cuprates. x y “Resonance peak”
96
J. M. Tranquada, H. Woo, T. G. Perring, H. Goka, G. D. Gu, G. Xu, M. Fujita, and K. Yamada, cond-mat/0401621 Red lines: triplon excitation of a 2 leg ladder with exchange J=100 meV
97
J. M. Tranquada, H. Woo, T. G. Perring, H. Goka, G. D. Gu, G. Xu, M. Fujita, and K. Yamada, cond-mat/0401621 Red lines: triplon excitation of a 2 leg ladder with exchange J=100 meV
98
J. M. Tranquada, H. Woo, T. G. Perring, H. Goka, G. D. Gu, G. Xu, M. Fujita, and K. Yamada, cond-mat/0401621 Red lines: triplon excitation of a 2 leg ladder with exchange J=100 meV
99
J. M. Tranquada et al., cond-mat/0401621 x y Spectrum of a two-leg ladder
100
Possible simple microscopic model of bond order Spin wavesTriplons“Resonance peak” M. Vojta and T. Ulbricht, cond-mat/0402377 G.S. Uhrig, K.P. Schmidt, and M. Grüninger, cond-mat/0402659 M. Vojta and S. Sachdev, unpublished.
101
J. M. Tranquada et al., cond-mat/0401621 x y Bond operator (S. Sachdev and R.N. Bhatt, Phys. Rev. B 41, 9323 (1990)) theory of coupled-ladder model, M. Vojta and T. Ulbricht, cond-mat/0402377
102
J. M. Tranquada et al., cond-mat/0401621 x y Numerical study of coupled ladder model, G.S. Uhrig, K.P. Schmidt, and M. Grüninger, cond-mat/0402659
103
J. M. Tranquada et al., cond-mat/0401621 x y LGW theory of magnetic criticality in the presence of static bond order, M. Vojta and S. Sachdev, to appear.
104
G.S. Uhrig, K.P. Schmidt, and M. Grüninger, cond-mat/0402659
105
Conclusions I.Theory of quantum phase transitions between magnetically ordered and paramagnetic states of Mott insulators: A. Dimerized Mott insulators: Landau-Ginzburg- Wilson theory of fluctuating magnetic order parameter. B. S=1/2 square lattice: Berry phases induce bond order, and LGW theory breaks down. Critical theory is expressed in terms of emergent fractionalized modes, and the order parameters are secondary. Conclusions I.Theory of quantum phase transitions between magnetically ordered and paramagnetic states of Mott insulators: A. Dimerized Mott insulators: Landau-Ginzburg- Wilson theory of fluctuating magnetic order parameter. B. S=1/2 square lattice: Berry phases induce bond order, and LGW theory breaks down. Critical theory is expressed in terms of emergent fractionalized modes, and the order parameters are secondary.
106
Conclusions II.Competing spin-density-wave/bond/superconducting orders in the hole-doped cuprates. Main features of spectrum of excitations in LBCO modeled by LGW theory of quantum critical fluctuations in the presence of static bond order across a wide energy range. Predicted magnetic field dependence of spin-density-wave order observed by neutron scattering in LSCO. E. Demler, S. Sachdev, and Y. Zhang, Phys.Rev. Lett. 87, 067202 (2001); B. Lake et al. Nature, 415, 299 (2002); B. Khaykhovich et al. Phys. Rev. B 66, 014528 (2002). Predicted pinned bond order in vortex halo consistent with STM observations in BSCCO. K. Park and S. Sachdev Phys. Rev. B 64, 184510 (2001); Y. Zhang, E. Demler and S. Sachdev, Phys. Rev. B 66, 094501 (2002); J.E. Hoffman et al. Science 295, 466 (2002). Energy dependence of LDOS modulations in BSCCO best modeled by modulations in bond variables. M. Vojta, Phys. Rev. B 66, 104505 (2002); D. Podolsky, E. Demler, K. Damle, and B.I. Halperin, Phys. Rev. B 67, 094514 (2003); C. Howald, H. Eisaki, N. Kaneko, and A. Kapitulnik, Phys. Rev. B 67, 014533 (2003). Conclusions II.Competing spin-density-wave/bond/superconducting orders in the hole-doped cuprates. Main features of spectrum of excitations in LBCO modeled by LGW theory of quantum critical fluctuations in the presence of static bond order across a wide energy range. Predicted magnetic field dependence of spin-density-wave order observed by neutron scattering in LSCO. E. Demler, S. Sachdev, and Y. Zhang, Phys.Rev. Lett. 87, 067202 (2001); B. Lake et al. Nature, 415, 299 (2002); B. Khaykhovich et al. Phys. Rev. B 66, 014528 (2002). Predicted pinned bond order in vortex halo consistent with STM observations in BSCCO. K. Park and S. Sachdev Phys. Rev. B 64, 184510 (2001); Y. Zhang, E. Demler and S. Sachdev, Phys. Rev. B 66, 094501 (2002); J.E. Hoffman et al. Science 295, 466 (2002). Energy dependence of LDOS modulations in BSCCO best modeled by modulations in bond variables. M. Vojta, Phys. Rev. B 66, 104505 (2002); D. Podolsky, E. Demler, K. Damle, and B.I. Halperin, Phys. Rev. B 67, 094514 (2003); C. Howald, H. Eisaki, N. Kaneko, and A. Kapitulnik, Phys. Rev. B 67, 014533 (2003).
107
Conclusions III. Breakdown of LGW theory of quantum phase transitions with magnetic/bond/superconducting orders in doped Mott insulators ? Conclusions III. Breakdown of LGW theory of quantum phase transitions with magnetic/bond/superconducting orders in doped Mott insulators ?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.