Presentation is loading. Please wait.

Presentation is loading. Please wait.

9/26/2006Katsushi Arisaka, UCLA 1 Katsushi Arisaka University of California, Los Angeles Department of Physics and Astronomy Unveiling.

Similar presentations


Presentation on theme: "9/26/2006Katsushi Arisaka, UCLA 1 Katsushi Arisaka University of California, Los Angeles Department of Physics and Astronomy Unveiling."— Presentation transcript:

1 9/26/2006Katsushi Arisaka, UCLA 1 Katsushi Arisaka University of California, Los Angeles Department of Physics and Astronomy arisaka@physics.ucla.edu Unveiling the Mystery of Ultra High Energy Cosmic Rays

2 9/26/2006Katsushi Arisaka, UCLA 2 Energy Spectrum of Cosmic Rays Energy Spectrum ~ E -3 The spectrum extends beyond 10 20 eV (=10 11 GeV =100 EeV). Beyond 10 20 eV, Flux is only one particle per km 2 - century. TeV GeV EeV PeV

3 9/26/2006Katsushi Arisaka, UCLA 3 Talk Outline  Physics Motivation  Why is 10 20 eV so special ?  Past and Ongoing Experiments  AGASA  HiRes  Pierre-Auger  Preliminary Results from Pierre-Auger  Energy Spectrum  Composition  Angular Distribution  Future Projects

4 9/26/2006Katsushi Arisaka, UCLA 4 Physics Motivation

5 9/26/2006Katsushi Arisaka, UCLA 5 Particle Physics in Early Universe 10 -45 sec 10 -40 10 -35 10 -30 10 -25 10 -20 10 -15 10 -10 10 -5 10 5 sec 1 1 year 10 3 10 6 10 9 year Time (sec) Temp. ( o K) 10 18 10 15 10 12 10 9 1PeV 1TeV 1GeV 1MeV 1KeV 1eV 10 30 10 25 10 20 10 15 10 10 5 1 Energy (GeV) 10 -3 eV Planck EW Now GUT Gravitation Strong Weak Electromagnetic Fundamental Interaction Electro-Weak GUT

6 9/26/2006Katsushi Arisaka, UCLA 6 Particle Physics in Early Universe 10 -45 sec 10 -40 10 -35 10 -30 10 -25 10 -20 10 -15 10 -10 10 -5 10 5 sec 1 1 year 10 3 10 6 10 9 year Time (sec) Temp. ( o K) 10 18 10 15 10 12 10 9 1PeV 1TeV 1GeV 1MeV 1KeV 1eV 10 30 10 25 10 20 10 15 10 10 5 1 Energy (GeV) 10 -3 eV Planck EW Now GUT Super Symmetry Super String Quantum Gravity Grand Unification Inflation Dark Matter Dark Energy Big Bang! Baryogenesys

7 9/26/2006Katsushi Arisaka, UCLA 7 Particle Physics in Early Universe 10 -45 sec 10 -40 10 -35 10 -30 10 -25 10 -20 10 -15 10 -10 10 -5 10 5 sec 1 1 year 10 3 10 6 10 9 year Time (sec) Temp. ( o K) 10 18 10 15 10 12 10 9 1PeV 1TeV 1GeV 1MeV 1KeV 1eV 10 30 10 25 10 20 10 15 10 10 5 1 Energy (GeV) 10 -3 eV Planck EW Now GUT Accelerator Telescope UHE Cosmic Rays Inflation Dark Matter Dark Energy Big Bang! Baryogenesys

8 9/26/2006Katsushi Arisaka, UCLA 8 Top-down or Bottom-up? 10 -45 sec 10 -40 10 -35 10 -30 10 -25 10 -20 10 -15 10 -10 10 -5 10 5 sec 1 1 year 10 3 10 6 10 9 year Time (sec) Temp. ( o K) 10 18 10 15 10 12 10 9 1PeV 1TeV 1GeV 1MeV 1KeV 1eV 10 30 10 25 10 20 10 15 10 10 5 1 Energy (GeV) 10 -3 eV Planck EW Now GUT Big Bang Active Galactic Nuclei Gamma Ray Burst Supernova Neutron Star Black Holes

9 9/26/2006Katsushi Arisaka, UCLA 9 The Extreme Universe Pulsar GRB AGN SNR Radio Galaxy

10 9/26/2006Katsushi Arisaka, UCLA 10 Possible Acceleration Sites Several possible accelerators in nature up to 10 20 eV. Extremely difficult to accelerate above 10 20 eV.

11 9/26/2006Katsushi Arisaka, UCLA 11 Interaction Length of UHE Protons Blasi, astro-ph/0307067 Photopion Loss Length Interaction Length Pair Production 10Mpc 1Gpc p +  (2.7 o K)    p +  ’s GZK Cutoff

12 9/26/2006Katsushi Arisaka, UCLA 12 E=10 19 eV E=10 20 eV E=10 18 eV Trajectory of Protons in the Galaxy Galactic Magnetic Field ~ 2 µG

13 9/26/2006Katsushi Arisaka, UCLA 13 Deflection of Protons >4  10 19 eV Dolag, astro-ph/0310902 0o0o 360 o < 100 Mpc Extra Galactic Magnetic Field ~ 1 nG

14 9/26/2006Katsushi Arisaka, UCLA 14 10 19 eV 10 21 eV 10 20 eV 10 18 eV Top-Down? GZK? Bent by Extra-Galactic B (~nG) Ankle Charge Particle Astronomy Trapped by Inner-Galactic B (~  G) Bottom-Up UHE Gamma Rays UHE Neutrinos Straight Trajectories ? Rich Physics and Astronomy

15 9/26/2006Katsushi Arisaka, UCLA 15 Past and Ongoing Experiments  AGASA  HiRes  Pierre-Auger

16 9/26/2006Katsushi Arisaka, UCLA 16 Detection Technique ee  Fluorescence Detector (FD) 10km ~ 27X o ~ 11 I MC Simulation of 10 19 eV Proton Shower Surface Detector (SD) AGASA HiRes Pierre-Auger

17 9/26/2006Katsushi Arisaka, UCLA 17 SD vs. FD  SD (Surface Detector) used by AGASA.  Operational 24 hours a day, but  Sparse sampling at the tail of shower.  FD (Fluorescence Detector) used by HiRes.  Totally calorimetric energy measurement, but  ~10% duty factor (only at moonless night).  Pierre-Auger utilizes both!

18 9/26/2006Katsushi Arisaka, UCLA 18 A keno G iant A ir S hower A rray 0 4km 111 Electron Detectors 100 km 2 27 Muon Detectors Operation 1991 - 2004 M. Teshima

19 9/26/2006Katsushi Arisaka, UCLA 19 The Highest Energy Event by AGASA 2.5 x 10 20 eV on 10 May 2001 M. Teshima

20 9/26/2006Katsushi Arisaka, UCLA 20 Energy Spectrum by AGASA M. Teshima Bottom-up with GZK Cutoff Top-down?

21 9/26/2006Katsushi Arisaka, UCLA 21 Two HiRes Detectors  HiRes1  21 mirrors, 1 ring  3 o < altitude < 17 o  HiRes2  12.6 km SW of HiRes1.  42 mirrors, 2 rings  3 o < altitude < 31 o G. Thomson

22 9/26/2006Katsushi Arisaka, UCLA 22 Stereo View by HiRes 1 & 2 C. Finley HiRes 1 HiRes 2

23 9/26/2006Katsushi Arisaka, UCLA 23 Energy Spectrum by HiRes Consistent with GZK Cutoff C. Finley (1999-2004) (1996-2005)

24 9/26/2006Katsushi Arisaka, UCLA 24 Energy Spectrum by HiRes C. Finley Consistent with GZK Cutoff !! Galactic Extra-Galactic (1999-2004) (1996-2005)

25 9/26/2006Katsushi Arisaka, UCLA 25 Energy Spectrum Ralph Engel AGASA (SD) HiRes (FD)

26 9/26/2006Katsushi Arisaka, UCLA 26 Pierre-Auger

27 9/26/2006Katsushi Arisaka, UCLA 27 Pierre Auger Collaboration 15 Countries 50 Institutions ~350 Scientists Italy Argentina Czech Republic Australia France Brazil Germany Bolivia * Poland Mexico Slovenia USA Spain Vietnam * United Kingdom * Associate Countries Jim Cronin Alan Watson Founders

28 9/26/2006Katsushi Arisaka, UCLA 28 S Pierre-Auger Observatory N Northern Auger in Colorado Southern Auger in Argentina 50km

29 9/26/2006Katsushi Arisaka, UCLA 29 50km Southern-Auger in Argentina Surface Detector 1600 Water Tanks 1.5 km spacing 3100 km 2 Fluorescence Detector 4 Telescope Sites 6 Telescopes per Site 24 Telescopes Total

30 9/26/2006Katsushi Arisaka, UCLA 30 Aerial view of Los Leones Fluorescence Site

31 9/26/2006Katsushi Arisaka, UCLA 31 Six Telescopes looking at 30 o x 30 o each

32 9/26/2006Katsushi Arisaka, UCLA 32

33 9/26/2006Katsushi Arisaka, UCLA 33 corrector lens Camera 440 PMTs 11 m 2 Mirror UV-Filter 300-400 nm Corrector Ring Optical Shutter

34 9/26/2006Katsushi Arisaka, UCLA 34 Tanks aligned seen from Los Leones

35 9/26/2006Katsushi Arisaka, UCLA 35 Water Tank on Site Real water tank under operation at Malargue

36 9/26/2006Katsushi Arisaka, UCLA 36

37 9/26/2006Katsushi Arisaka, UCLA 37 Installing Electronics

38 9/26/2006Katsushi Arisaka, UCLA 38 Southern Auger as of Sept. 2006 50km 1100 Water Tanks (out of 1600) ~ 20 x AGASA AGASA Los Leones Coihueco Los Marados

39 9/26/2006Katsushi Arisaka, UCLA 39 All the rest will be deployed by Summer of 2007

40 9/26/2006Katsushi Arisaka, UCLA 40 Comparison of Integrated Aperture

41 9/26/2006Katsushi Arisaka, UCLA 41 A Typical Event (“Young” Shower, Zenith~35 o ) 203 204 116 114 S(1000) ~8  10 19 eV S(1000) ~7  10 19 eV 203 204 116 114 215 217 Lateral Distribution Function 206

42 9/26/2006Katsushi Arisaka, UCLA 42 A Typical Event (“Young” Shower, Zenith~35 o ) EM Muon 203 204 116 114 203 204 215 217 (nsec) S(1000) ~7  10 19 eV Muon EM Muon 217 215 Lateral Distribution Function 206

43 9/26/2006Katsushi Arisaka, UCLA 43 A Typical Inclined Event (“Old” Shower, Zenith~72 o ) Muon ~6  10 19 eV Direct Cherenkov on PMT 1 Muon Lateral Distribution Function

44 9/26/2006Katsushi Arisaka, UCLA 44 A Stereo-Hybrid Event (Zenith~70 o ) Fluores. Telescope Fluores. Telescope ~8  10 19 eV Lateral Distribution Function 26 June 2004

45 9/26/2006Katsushi Arisaka, UCLA 45 A Stereo-Hybrid Event (Zenith~70 o ) Coihueco Los Leones Fluores. Telescope Fluores. Telescope 26 June 2004

46 9/26/2006Katsushi Arisaka, UCLA 46 A Stereo-Hybrid Event (Zenith~70 o ) Los Leones Pulse finding Time vs  fit Coihueco

47 9/26/2006Katsushi Arisaka, UCLA 47 A Stereo-Hybrid Event (Zenith~70 o ) Coihueco Los Leones Time vs  fit Shower Profile ~6  10 19 eV

48 9/26/2006Katsushi Arisaka, UCLA 48 Preliminary Results  Energy Spectrum  Composition  Angular Distribution

49 9/26/2006Katsushi Arisaka, UCLA 49 Energy Spectrum

50 9/26/2006Katsushi Arisaka, UCLA 50 S(1000) at 38 o vs. FD Energy S(1000) at 38 o 1 EeV10 EeV 100 EeV 50

51 9/26/2006Katsushi Arisaka, UCLA 51 Proton, SIBYLL (AIRES) Proton, QGSJET (AIRES) Proton, GEISHA, QGSJET (CORSIKA) Proton, FLUKA, QGSJET (CORSIKA) Proton, GEISHA, QGSJET2 (CORSIKA) Proton, FLUKA, QGSJET2 (CORSIKA) Iron, SIBYLL (AIRES) Iron, QGSJET (AIRES) 50 34 (VEM) SD+MC Average (    18%) FD Average (    30%) Fixed Beta Floating Beta Proton, SIBYLL (AIRES) Proton, QGSJET (AIRES) Proton, GEISHA, QGSJET (CORSIKA) Proton, FLUKA, QGSJET (CORSIKA) Proton, GEISHA, QGSJET2 (CORSIKA) Proton, FLUKA, QGSJET2 (CORSIKA) Iron, SIBYLL (AIRES) Iron, QGSJET (AIRES) Summary of S(1000) at 38 o and 10 EeV Proton Iron

52 9/26/2006Katsushi Arisaka, UCLA 52 Energy Spectrum  E 3 (FD Energy) Presented at ICRC 2005 (only one year of data)

53 9/26/2006Katsushi Arisaka, UCLA 53 Energy boosted by 30% Energy Spectrum  E 3 (SD+MC Energy)

54 9/26/2006Katsushi Arisaka, UCLA 54 Summary of Energy Spectrum  Energy spectrum based on FD Energy is consistent with HiRes.  fits reasonably well with the GZK cutoff.  Injection spectrum of 1/E 2.6.  Energy spectrum based on SD+MC Energy is similar to AGASA.  a hint of Super-GZK events?  but not as many as AGASA observed.  Possible Causes:  FD: Poor measurement of fluorescence photon yield.  SD: MC can not produce enough number of muons.

55 9/26/2006Katsushi Arisaka, UCLA 55 Composition  Constant Intensity Cut  Photon Flux Limit  Neutrino Flux Limit

56 9/26/2006Katsushi Arisaka, UCLA 56 Constant Intensity Cut

57 9/26/2006Katsushi Arisaka, UCLA 57 S(1000) vs. Sec(  ) 60 o 45 o 30 o 38 o 50 VEM 34 VEM SD+CIC Iron Proton Photon

58 9/26/2006Katsushi Arisaka, UCLA 58 S(1000) MC/CIC vs. sec(  ) at 10 EeV 60 o 45 o 30 o 38 o FD+CIC SD+CIC Sensitive to Xmax Sensitive to Muon Richness

59 9/26/2006Katsushi Arisaka, UCLA 59 Muon Richness vs. Xmax Iron/QGSJET Iron/SIBYLL Proton/QGSJET Proton/SIBYLL Gamma/QGSJET Gamma/SIBYLL CIC Xmax  Proton like Muon Richness  Iron like

60 9/26/2006Katsushi Arisaka, UCLA 60 Photon Limit

61 9/26/2006Katsushi Arisaka, UCLA 61 What is Dark Matter? Super Heavy Dark Matter

62 9/26/2006Katsushi Arisaka, UCLA 62 Super Heavy Dark Matter fit to AGASA  Photon flux can be predicted  by decay of Super Heavy Dark Matter  based on AGASA data Gelmini, et al, astro-ph/0506128 AGASA Data Bottom up Proton P from SHDM  from SHDM

63 9/26/2006Katsushi Arisaka, UCLA 63 Photon (MC Simulation) Photon (> 10 EeV) Muon Rich  Muon Poor Deep X max  Shallow X max

64 9/26/2006Katsushi Arisaka, UCLA 64 Proton (MC Simulation) Proton (> 20 EeV) Muon Rich  Muon Poor Deep X max  Shallow X max

65 9/26/2006Katsushi Arisaka, UCLA 65 Expected Photon Fraction Limit Super Heavy Dark Matter Topological Defects Z Burst Expected Limit GZK Photons

66 9/26/2006Katsushi Arisaka, UCLA 66 Expected Sensitivity on Photon Flux Expected Limit Super Heavy Dark Matter Topological Defects Z Burst

67 9/26/2006Katsushi Arisaka, UCLA 67 Future Sensitivity on Photon Flux Topological Defects Z Burst Expected Limit 2010 2015 Super Heavy Dark Matter

68 9/26/2006Katsushi Arisaka, UCLA 68 Summary of Photon Limit  Pierre-Auger Observatory Surface Detector is a background free photon detector.  Extremely sensitive to top-down models.  Pierre-Auger already has enough data to test top-down models inspired by the AGASA spectrum.  Analysis of real data is being prepared for publication.

69 9/26/2006Katsushi Arisaka, UCLA 69 Neutrino Limit

70 9/26/2006Katsushi Arisaka, UCLA 70 Detection of Neutrino

71 9/26/2006Katsushi Arisaka, UCLA 71 Neutrino Sensitivities (per year) by Dmitri Semikoz AGN Core Exotic Hadron GZK (Max) GZK (W&B) Top Down AUGER  AUGER e ICECUBE AMANDA II ANITA 30 days  ray Bound RICE Atmospheric EUSO Strong DIS No DIS

72 9/26/2006Katsushi Arisaka, UCLA 72 Angular Distribution

73 9/26/2006Katsushi Arisaka, UCLA 73 Clustering of UHECR (>40 EeV) by AGASA 6 doublets and 1 triplet within 2.5 o cone.

74 9/26/2006Katsushi Arisaka, UCLA 74 AGASA Auto-Correlation 40 EeV2.5 o

75 9/26/2006Katsushi Arisaka, UCLA 75 HiRes Correlation with BL Lacs Gorbunov et al., astro-ph 0406654

76 9/26/2006Katsushi Arisaka, UCLA 76  Six combinations were tested with independent data (with m<18):  Note:  These are not independent results: the samples overlap.  Analysis has been a posteriori, so F values are not true probabilities.  Must be tested with independent data  R.U. Abbasi et al., Astrophys.J. 636 (2006) 680 [astro-ph/0507120] New HiRes Analysis

77 9/26/2006Katsushi Arisaka, UCLA 77 Angular Resolution of Auger SD >10 EeV >3 EeV >1 EeV HiRes (Stereo) AGASA

78 9/26/2006Katsushi Arisaka, UCLA 78 AGASA Galactic Center

79 9/26/2006Katsushi Arisaka, UCLA 79 Auger Galactic Center AGASA Sugar G.C

80 9/26/2006Katsushi Arisaka, UCLA 80 Summary of Auger  Pierre-Auger is finally a reality.  SD: 30 times larger than AGASA. (2/3 complete)  FD: 4 stations of HiRes-like telescopes. (3/4 complete.)  Hybrid observation is giving critical information to determine the energy and composition.  Why AGASA and HiRes differ ~30% in energy?  Cosmic rays appear much richer than expected!  New physics results are expected soon.  Energy Spectrum  Photon and Neutrino limits, or discovery!  Clustering, BL Lac correlation…

81 9/26/2006Katsushi Arisaka, UCLA 81 Future Projects  TA  Auger-North  EUSO

82 9/26/2006Katsushi Arisaka, UCLA 82 TA (Telescope Array)

83 9/26/2006Katsushi Arisaka, UCLA 83 3 x Fluorescence Stations AGASA x 4 576 Counters AGASA x 9 Low Energy Extension TALE Comm. Tower CLF Millard County in Utah / USA M. Fukushima

84 9/26/2006Katsushi Arisaka, UCLA 84 M. Fukushima

85 9/26/2006Katsushi Arisaka, UCLA 85 M. Fukushima

86 9/26/2006Katsushi Arisaka, UCLA 86 M. Fukushima

87 9/26/2006Katsushi Arisaka, UCLA 87 350 assembled in Utah in Feb - Mar 2006, 150 to be produced after July 18 test-deployed. 500 to be deployed in several batches this year. M. Fukushima

88 9/26/2006Katsushi Arisaka, UCLA 88 Auger-South Upgrade and Auger-North

89 9/26/2006Katsushi Arisaka, UCLA 89 10 19 eV 10 21 eV 10 20 eV 10 18 eV Top-Down? GZK? Bent by Extra-Galactic B (~nG) Ankle Charge Particle Astronomy Trapped by Inner-Galactic B (~  G) Bottom-Up Straight Trajectories ? Original Auger SD Hybrid Infill + 2  -FD Auger-South Expanded Auger Auger-North Future Expansion of Auger

90 9/26/2006Katsushi Arisaka, UCLA 90 Auger-North in Colorado State Colorado State Auger -North

91 9/26/2006Katsushi Arisaka, UCLA 91 Auger-North  Total area: 10,000 km 2  100 x AGASA  3 x Auger-South  4000 surface detector  1 mile (1.6 km) spacing  84 x 48 mile rectangle Lamar

92 9/26/2006Katsushi Arisaka, UCLA 92 Pruitt Mound in Colorado Site View to west, Sept 23, 2003

93 9/26/2006Katsushi Arisaka, UCLA 93 Neutrino Sensitivities by Dmitri Semikoz AGN Core Exotic Hadron GZK (Max) GZK (W&B) Top Down AUGER (S+N, 5 years) AUGER  AUGER e ICECUBE AMANDA II ANITA 30 days  ray Bound RICE Atmospheric EUSO Strong DIS No DIS

94 9/26/2006Katsushi Arisaka, UCLA 94 EUSO (Extreme Universe Space Observatory)

95 9/26/2006Katsushi Arisaka, UCLA 95 Observation Principle of EUSO F. Kajino

96 9/26/2006Katsushi Arisaka, UCLA 96 JEM-EUSO Telescope at ISS JEM-EUSO Telescope will be attached to Exposure Facility of Japanese Experiment Module (JEM/EF) of ISS in about 2012. Vertical ModeTilted Mode Larger effective area with ~45°tilt F. Kajino

97 9/26/2006Katsushi Arisaka, UCLA 97 JEM-EUSO Telescope Structure Multi-pixel PMT Electronics Fresnel Lens F. Kajino

98 9/26/2006Katsushi Arisaka, UCLA 98 Shower Image on the EUSO Focal Surface Y X 20 events of 10 20 eV proton showers are superimposed on the EUSO focal surface with 192 k pixels. x-t viewy-t view F. Kajino

99 9/26/2006Katsushi Arisaka, UCLA 99 Summary

100 9/26/2006Katsushi Arisaka, UCLA 100 Comparison of Integrated Aperture

101 9/26/2006Katsushi Arisaka, UCLA 101 Comparison of Integrated Aperture

102 9/26/2006Katsushi Arisaka, UCLA 102 Conclusions  The origin of UHECR is still unknown.  Any events beyond the GZK cutoff?  If so, signals from the early Universe??  Pierre-Auger (South) is nearly complete.  Already 2.5 years of data with partial detectors. ~3 x AGASA statistics  Several publications expected soon. Energy Spectrum, Photon Limit, Angular Distribution…  More experiments will follow Auger.  TA, Auger-North, EUSO…


Download ppt "9/26/2006Katsushi Arisaka, UCLA 1 Katsushi Arisaka University of California, Los Angeles Department of Physics and Astronomy Unveiling."

Similar presentations


Ads by Google