Download presentation
Presentation is loading. Please wait.
1
3-D Migration Deconvolution Jianxing Hu, GXT Bob Estill, Unocal Jianhua Yu, University of Utah Gerard T. Schuster, University of Utah
2
Why Do Migration Deconvolution (MD) ? Outline Migration Deconvolution Examples Conclusions Implementation of MD
3
Why Do Migration Deconvolution (MD) ? Outline Migration Deconvolution Examples Conclusions Implementation of MD
4
Migration noise and artifacts Migration Noise Problems 0 3.5 Depth (km) Weak illumination Footprint
5
Purpose of MD Processing: Improving spatial resolution Enhancing illumination Suppressing migration noise and artifacts
6
Why Do Migration Deconvolution (MD) ? Outline Migration Deconvolution Examples Conclusions Implementation of MD
7
M = L T Migration: Migrated image L R L is modeling operator Reflectivity
8
T R = (L L ) M 3-D PRESTACK MD Reflectivity Design an improved MD filter Migrated Section MD is to eliminate the blurring influence in migration image by designing MD operator Goal:
9
Why Do Migration Deconvolution (MD) ? Outline Migration Deconvolution Examples Conclusions Implementation of MD
10
MD Implementation Steps: Step 1: Prepare traveltime table Velocity cube Acquisition geometry information or Use migration timetable
11
Calculate the migration Green’s function MD Implementation Steps: Step 2: Y (km) Depth (km) Depth Level i N L
12
Step 4: Invert MD image at the depth Z i by solving linear equations MD Implementation Steps: Step 5: Repeat Steps 2-4 until the maximum depth is finished
13
Why Do Migration Deconvolution (MD) ? Outline Migration Deconvolution Examples : Synthetic data Conclusions Implementation of MD
14
0 3 km 0 3-D Point Scatterer Model 3 km 11 X 11 Receivers 11 X 11 Receivers dxg=dyg=0.3 km Imaging: dx=dy=50 m dz=100 m 3X3 Sources; dxshot=dyshot=1.5 km 10 km
15
0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) MIG MD Z=1 km Z=3 km Z=5 km Depth Slices
16
0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) MIG MD Z=7 km Z=9 km Z=10 km Depth Slices
17
0 2.5 km 0 Meandering Stream Model 2.5 km 5 X 1 Sources; 11 X 7 Receivers 3.5 km
18
Mig MD Model 0 Y (km) X (km) 2.5 0 Z=3.5 KM
19
0 12.2 km 0 3-D SEG/EAGE Salt Model 12.2 km 9 X5 Sources; dxshot=dyshot=1 km 201 X 201 Receivers Imaging: dx=dy=20 m
20
3-D SEG/EAGE Salt Model X (km)Y (km) Y=7.12 km
21
Mig and MD ( z=1.4 km, negative polarity) X (km) 3 10 Y (km) 59.85 X (km) MDMig
22
MD (z=1.2 km)Mig (z=1.2 km) X (km) 3 10 Y (km) 59.85 X (km)
23
MD (z=1.2 km)Mig (z=1.2 km)
24
Why Do Migration Deconvolution (MD) ? Outline Migration Deconvolution Examples: 2-D field data Conclusions Implementation of MD
25
PS PSTM Image ( by Unocal) 0 6 X (km) 0 8 Time (s)
26
0 6 X (km) 0 8 Time (s) MD PSTM(courtesy of Unocal) PSTMD
27
0 6 X (km) 3 8 Time (s) MD PSTM(courtesy of Unocal) PSTMD
28
Why Do Migration Deconvolution (MD) ? Outline Migration Deconvolution Examples: 3-D field data Conclusions Implementation of MD
29
3-D Land Field Data : Receivers : Sources
30
1.6 s Inline Crossline 3D PSTM (courtesy of Unocal) MD
31
2.0 s Crossline 3D PSTM (courtesy of Unocal) MD
32
3 Mig in Inline (Courtesy of Unocal) MD
33
Mig MD Mig MD
34
Mig (Courtesy of Unocal) MD Inline Number 1901 1 300 Crossline Number Inline Number (2 kft)
35
Fault
36
(3.6 kft) Inline Number 1901 1 265 Crossline Number Inline Number Mig (Courtesy of Unocal) MD
37
Inline Number 190 1.1 7.0 Depth (kft) 90Inline Number1 Mig (courtesy of Unocal)MD (Crossline=50)
38
(crossline 200) 1901 1.1 8.0 Depth (kft) Mig (courtesy of Unocal)MD
39
1250 1.1 7.0 Depth (kft) Crossline Number 7.0 1.1 (Inline =50) Mig ( Unocal ) MD
40
Why Do Migration Deconvolution (MD) ? Outline Migration Deconvolution Examples Conclusions Implementation of MD
41
Conclusions Aperture width and filter length in designing MD filter are two key parameters Improve resolution and suppress migration artifacts MD cost is related with acquisition geometry
42
Acknowledgments Thank Amramco, Unocal, and Chevron- Texaco for providing the data setsThank Amramco, Unocal, and Chevron- Texaco for providing the data sets Thank 2002 UTAM sponsors for their financial supportThank 2002 UTAM sponsors for their financial support The help and comments from Alan Leeds and George Yao are very appreciatedThe help and comments from Alan Leeds and George Yao are very appreciated http://utam.gg.utah.eduhttp://utam.gg.utah.edu
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.