Download presentation
Presentation is loading. Please wait.
1
Combustion Team High Speed Combustion 6/21/20151NASA Grant URC NCC NNX08BA44A Faculty Advisors: Dr. Guillaume Dr. Wu Dr. Boussalis Dr. Liu Dr. Rad Sara Esparza Cesar Olmedo Alonzo Perez Student Researchers:
2
Purpose To achieve and sustain Mach 1.0 to 2.0 speed, induce mixing and sustain combustion for a duration 6/21/2015NASA Grant URC NCC NNX08BA44A2
3
Converging-Diverging Nozzle Nozzle brings air up to speed Entry and exit nozzle views 6/21/2015NASA Grant URC NCC NNX08BA44A3
4
CD Nozzle Drawing 6/21/2015NASA Grant URC NCC NNX08BA44A
5
CD Nozzle Calculations 6/21/2015NASA Grant URC NCC NNX08BA44A Expansion Area Ratio Throat Compression Area Ratio Expansion Area Ratio Throat Area Expansion Area Ratio A A M = 2.4 Isentropic flow properties D=.30D=.22 2.86 Throat D=.13
6
Nozzle Data 6/21/2015NASA Grant URC NCC NNX08BA44A6
7
Initial Testing Tested nozzle design 6/21/2015NASA Grant URC NCC NNX08BA44A7
8
Pressure Reading at Nozzle Exit Pressure gage reading Anderson’s text: Mach 2.6 Area ratio: 2.89
9
Numerical and Experimental Results Coincide Exit pressure corresponds to 5.23 psia as seen in testing 6/21/2015NASA Grant URC NCC NNX08BA44A9
10
Nozzle Error 22% Error between Experimental and Numerical Calculations 6/21/2015NASA Grant URC NCC NNX08BA44A10
11
Testing Picture of the set up Used hydrogen tank from MFDCLab Combustion occurred Below Mach one 6/21/2015NASA Grant URC NCC NNX08BA44A11
12
Mixing Cavity & Combustor Initial Concept – Use cavity to re-circulate fuel and air improve mixing – Produce ideal combustion environment 6/21/2015NASA Grant URC NCC NNX08BA44A12
13
Ignition System Car distributor 6/21/2015NASA Grant URC NCC NNX08BA44A13
14
Overall Design 6/21/2015NASA Grant URC NCC NNX08BA44A Lab Supply Quick Release – CD Nozzle Connection Section View Fuel inlet
15
Testing Results We developed combustion Flow speed was not supersonic Cavity was too big and it produced a bow shock and reduced flow 6/21/2015NASA Grant URC NCC NNX08BA44A15
16
Final Design Met with Dr Wu to develop Smaller cavity Development of hydrogen and spark plug manifold 6/21/2015NASA Grant URC NCC NNX08BA44A16
17
6/21/2015NASA Grant URC NCC NNX08BA44A17
18
Pathlines and Particle Tracing 6/21/2015NASA Grant URC NCC NNX08BA44A18
19
Final Design 6/21/2015NASA Grant URC NCC NNX08BA44A19
20
Final Design Solidworks assembly Side and front views 6/21/2015NASA Grant URC NCC NNX08BA44A20
21
Future Work Test at supersonic speeds Incorporate heating coil Add insulation Acquire silane Purchase Gambit or ICES 6/21/2015NASA Grant URC NCC NNX08BA44A21
22
6/21/2015NASA Grant URC NCC NNX08BA44A Textbook References Anderson, J. “Compressible Flow.” Anderson, J. “Hypersonic & High Temperature Gas Dynamics” Curran, E. T. & S. N. B. Murthy, “Scramjet Propulsion” AIAA Educational Series, Fogler, H.S. “Elements of Chemical Reaction Engineering” Prentice Hall International Studies. 3 rd ed. 1999. Heiser, W.H. & D. T. Pratt “Hypersonic Airbreathing Propulsion” AIAA Educational Series. Olfe, D. B. & V. Zakkay “Supersonic Flow, Chemical Processes, & Radiative Transfer” Perry, R. H. & D. W. Green “Perry’s Chemical Engineers’ Handbook” McGraw-Hill Turns, S.R. “An Introduction to Combustion” White, E.B. “Fluid Mechanics”. 22
23
6/21/2015NASA Grant URC NCC NNX08BA44A Journal References Allen, W., P. I. King, M. R. Gruber, C. D. Carter, K. Y Hsu, “Fuel-Air Injection Effects on Combustion in Cavity-Based Flameholders in a Supersonic Flow”. 41 st AIAA Joint Propulsal. 2005-4105. Billig, F. S. “Combustion Processes in Supersonic Flow”. Journal of Propulsion, Vol. 4, No. 3, May-June 1988 Da Riva, Ignacio, Amable Linan, & Enrique Fraga “Some Results in Supersonic Combustion” 4 th Congress, Paris, France, 64-579, Aug 1964 Esparza, S. “Supersonic Combustion” CSULA Symposium, May 2008. Grishin, A. M. & E. E. Zelenskii, “Diffusional-Thermal Instability of the Normal Combustion of a Three-Component Gas Mixture,” Plenum Publishing Corporation. 1988. Ilbas, M., “The Effect of Thermal Radiation and Radiation Models on Hydrogen-Hydrocarbon Combustion Modeling” International Journal of Hydrogen Energy. Vol 30, Pgs. 1113-1126. 2005. Qin, J, W. Bao, W. Zhou, & D. Yu. “Performance Cycle Analysis of an Open Cooling Cycle for a Scramjet” IMechE, Vol. 223, Part G, 2009. Mathur, T., M. Gruber, K. Jackson, J. Donbar, W. Donaldson, T. Jackson, F. Billig. “Supersonic Combustion Experiements with a Cavity-Based Fuel Injection”. AFRL-PR-WP-TP-2006-271. Nov 2001 McGuire, J. R., R. R. Boyce, & N. R. Mudford. Journal of Propulsion & Power, Vol. 24, No. 6, Nov-Dec 2008 Mirmirani, M., C. Wu, A. Clark, S, Choi, & B. Fidam, “Airbreathing Hypersonic Flight Vehicle Modeling and Control, Review, Challenges, and a CFD-Based Example” Neely, A. J., I. Stotz, S. O’Byrne, R. R. Boyce, N. R. Mudford, “Flow Studies on a Hydrogen-Fueled Cavity Flame- Holder Scramjet. AIAA 2005-3358, 2005. Tetlow, M. R. & C. J. Doolan. “Comparison of Hydrogen and Hydrocarbon-Fueld Scramjet Engines for Orbital Insertion” Journal of Spacecraft and Rockets, Vol 44., No. 2., Mar-Apr 2007. 23
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.