Download presentation
Presentation is loading. Please wait.
2
1 Some problems in BEM applications J. T. Chen 陳正宗 特聘教授 Department of Harbor and River Engineering National Taiwan Ocean University, Keelung, Taiwan March 1, 2005 Presentation for 台科大營建系
3
2 Overview of BIE and BEM Mathematical tools Hypersingular BIE Degenerate kernel Circulants SVD updating term SVD updating document Fredholm alternative theorem Nonuniqueness and its treatments Degenerate scale Degenerate boundary True and spurious eigensolution (interior prob.) Fictitious frequency (exterior acoustics) Corner Conclusions and further research Outlines
4
3 Related works since 1984 Research topics of NTOU MSV LAB (1984-2005)
5
4 Numerical phenomena (Degenerate scale) Error (%) of torsional rigidity a 0 5 125 Previous approach : Try and error on a Present approach : Only one trial
6
5 Numerical phenomena (Fictitious frequency) t(a,0)
7
6 Numerical phenomena (Spurious eigensolution)
8
7 Numerical phenomena (Degenerate boundary) Singular integral equation Hypersingular integral equation Cauchy principal valueHadamard principal value Boundary element method Dual boundary element method degenerate boundary normal boundary
9
8 Numerical phenomena (Corner) Boundary
10
9 Motivation Numerical instability occurs in BEM ? (1) degenerate scale (2) degenerate boundary (3) fictitious frequency (4) corner Spurious eigenvalues appear ? (5) true and spurious eigenvalues Five pitfalls in BEM Mathematical essence—rank deficiency ? (How to deal with ?) nonuniqueness ?
11
10 Mathematical tools Hypersingular BIE Degenerate kernel Circulants SVD updating term SVD updating document Fredholm alternative theorem
12
11 Mathematical tools Hypersingular BIE Degenerate kernel Circulants SVD updating term SVD updating document Fredholm alternative theorem
13
12 Dual integral equations for a boundary point Singular integral equation Hypersingular integral equation where U(s,x) is the fundamental solution.
14
13 Mathematical tools Hypersingular BIE Degenerate kernel Circulants SVD updating term SVD updating document Fredholm alternative theorem
15
14 Degenerate kernel (step1) Step 1 S x R x: variable s: fixed
16
15 Degenerate kernel (step2, step3) x s A B Step 2 RARA Step 3 x B A s RBRB
17
16 Mathematical tools Hypersingular BIE Degenerate kernel Circulants SVD updating term SVD updating document Fredholm alternative theorem
18
17 Circulant
19
18 Mathematical tools Hypersingular BIE Degenerate kernel Circulants SVD updating term SVD updating document Fredholm alternative theorem
20
19 SVD Diagonal matrix Unitary matrix,
21
20 Direct method for Dirichlet B. C. : SVD updating terms SVD updating terms Singular equation (UT method) Hypersingular equation (LM method)
22
21 Mathematical tools Hypersingular BIE Degenerate kernel Circulants SVD updating term SVD updating document Fredholm alternative theorem
23
22 For double-layer potential approach: SVD updating documents A b x
24
23 Mathematical tools Hypersingular BIE Degenerate kernel Circulants SVD updating term SVD updating document Fredholm alternative theorem
25
24 Fredholm ’ s alternative theorem: For solving an algebraic system: Fredholm alternative theorem Alternative theorem Infinite solution No solution : the transpose conjugate matrix of where satisfies
26
25 1.Degenerate scale for torsion bar problems 2.Degenerate boundary problems 3.True and spurious eigensolution for interior eigenproblem 4.Fictitious frequency for exterior acoustics 5. Corner Five pitfalls in BEM
27
26 The degenerate scale for torsion bar using BEM Error (%) of torsional rigidity a 0 5 125 Previous approach : Try and error on a Present approach : Only one trial
28
27 Direct searching for the degenerate scale Trial and error---detecting zero singular value by using SVD [Lin (2000) and Lee (2001)] Determination of the degenerate scale by trial and error
29
28 Cross Section Normal scale Torsional rigidity Reference equation, where, x on B,. 1.4480 1.45091.5539 (N.A.)2.6972 (N.A.)6.1530 (6.1538) Expansion ratio 0.5020 (0.5) 0.5019 (0.5)0.5254 (N.A.)0.6902 (N.A.)0.8499 (0.85) Degenerate scale R=1.0040 (1.0) = 2.0058 (2.0)a=1.0508 (N.A.)h=2.0700 (N.A.)a=0.8499 (0.85) h R a b 2a2a 2a2a Determination of the degenerate scale for the two-dimensional Laplace problems Note: Data in parentheses are exact solutions. Data marked in the shadow area are derived by using the polar coordinate.
30
29 Three regularization techniques to deal with degenerate scale problems in BEM Hypersingular formulation (LM equation) Adding a rigid body term (U*(s,x)=U(s,x)+c) CHEEF concept
31
30 Degenerate scale for torsion bar problems with arbitrary cross sections 0.1840.50 Unregularized Regularized c=1.0 Shifting Normal scale Original degenerate scale New degenerate scale
32
31 Degenerate scale for torsion bar problems with arbitrary cross sections
33
32 Normal scale ( =3.0, =1.0) Degenerate scale ( =1.5, =0.5) Normal scaleDegenerate scale Analytical solution 8.48230.53012.2491.174 U T Conventional BEM 8.7623 (3.30%)-0.8911 (268.10%)2.266 (0.76%)2.0570 (75.21%) L M formulation 0.4812 (9.22%)1.1472 (2.31%) Add a rigid body term c=1.0 0.5181 (2.26%)1.1721(0.19%) c=2.0 0.5176 (2.36%)1.1723 (0.17%) CHEEF concept 0.5647 (6.53%) CHEEF POINT (2.0, 2.0) 1.1722 (0.18%) CHEEF POINT (5.0, 5.0) Ellipse 2a2a 2a2a Square cross section Torsion rigidity method Regularization techniques are not necessary. (a=1.0)(a=0.85) Numerical results Note: data in parentheses denote error.
34
33 Normal scale h=3.0 Degenerate scale h=2.07 Normal scaleDegenerate scale Analytical solution 3.11770.706712.64880.9609 U T Conventional BEM 3.1829 (2.09%)1.1101 (57.08%)12.5440 (0.83%)1.8712 (94.73%) L M formulation 0.6837 (3.25%)0.9530 (0.82%) Add a rigid body term c=1.0 0.7035 (0.45%)0.9876 (2.78%) c=2.0 0.7024 (0.61%)0.9879 (2.84%) CHEEF concept 0.7453 (5.46%) CHEEF POINT (15.0, 15.0) 0.9272 (3.51%) CHEEF POINT (20.0, 20.0) Triangle Keyway cross section Torsion rigidity method Regularization techniques are not necessary. (a=2.0)(a=1.05) Numerical results Note: data in parentheses denote error. h a b
35
34 Error using three methods
36
35 Multiply-connected problem
37
36 1.Degenerate scale for torsion bar problems 2.Degenerate boundary problems 3.True and spurious eigensolution for interior eigenproblem 4.Fictitious frequency for exterior acoustics 5. Corner Five pitfalls in BEM
38
37 Engineering problems Thin-airfoill Aerodynamics Seepage with sheetpiles 12 3 4 56 7 8 oblique incident water wave Free water surface I IIIII Pseudo boundary O S x S y d z x Top view O
39
38 Degeneracy of the Degenerate Boundary geometry node the Nth constant or linear element (0,0) (-1,0.5) (-1,-0.5) (1,0.5) (1,-0.5) 12 3 4 56 7 8 N 5(+) 6(+) 5(+) 6(-) 5(+) 6(+) 5(+) 6(+) 5(+) 6(+) 5(+) 6(-) 5(+) 6(-) 5(+) 6(-)
40
39 The constraint equation is not enough to determine the coefficient p and q, Another constraint equation is required Theory of dual integral equations
41
40 Successful experiences
42
41 X-ray detection
43
42 FEM simulation
44
43 Stress analysis
45
44 BEM simulation
46
45 V-band structure (Tien-Gen missile)
47
46 FEM simulation
48
47
49
48 Shong-Fon II missile
50
49 IDF
51
50 Flow field
52
51 Seepage flow
53
52 Meshes of FEM and BEM
54
53 Screen in acoustics b a e c t=0
55
54 Water wave problem Free water surface S x Top view O y z O x z S breakwater oblique incident water wave
56
55 Reflection and Transmission
57
56 Cracked torsion bar
58
57
59
58
60
59 Dual BEM Degenerate boundary problems u=0 r=1 u=0 r=1 u=0 r=1 interface Subdomain 1 Subdomain 2 Subdomain 1 Subdomain 2 Multi-domain BEM
61
60 Conventional BEM in conjunction with SVD Singular Value Decomposition Rank deficiency originates from two sources: (1). Degenerate boundary (2). Nontrivial eigensolution N d= 5 N d= 4
62
61 Dual BEM Multi-domain BEM UT BEM + SVD (Present method) versus k Determinant versus k
63
62 Two sources of rank deficiency (k=3.09) N d= 5 None trivial sol. EigensolutionDegenerate boundary
64
63 k=3.14 k=3.82 k=4.48 UT BEM+SVD k=3.09 k=3.84k=4.50 FEM (ABAQUS)
65
64 1.Degenerate scale for torsion bar problems 2.Degenerate boundary problems 3.True and spurious eigensolution for interior eigenproblem 4.Fictitious frequency for exterior acoustics 5. Corner Five pitfalls in BEM r2r2 r1r1
66
65 11 k r2r2 r1r1 r 1 =0.5 m r 2 =2.0 m Spurious eigenvalue of membrane
67
66 Treatments SVD updating term Burton & Miller method CHIEF method
68
67 11 k SVD updating term for true eigenvalue True eigenvalues s s s
69
68 Burton & Miller method
70
69 Two CHIEF points for spurious eigenvalues of multiplicity two 11 k s
71
70 Spurious eigenvalue of plate
72
71 Treatments SVD updating term Burton & Miller method CHIEF method
73
72 SVD updating term
74
73 The Burton & Miller concept
75
74 The CHIEF concept
76
75 1.Degenerate scale for torsion bar problems 2.Degenerate boundary problems 3.True and spurious eigensolution for interior eigenproblem 4.Fictitious frequency for exterior acoustics 5. Corner Five pitfalls in BEM ka t(a,0)
77
76 On the Mechanism of Fictitious Eigenvalues in Direct and Indirect BEM incident wave radiation Physical resonance Numerical resonance
78
77 CHIEF and Burton & Miller method ka
79
78 1.Degenerate scale for torsion bar problems 2.Degenerate boundary problems 3.True and spurious eigensolution for interior eigenproblem 4.Fictitious frequency for exterior acoustics 5. Corner Five pitfalls in BEM
80
79 Boundary Theory of Dual Integral Equations for a Corner
81
80 Domain Boundary Domain Boundary Domain Boundary Domain Boundary (1) U(s,x) (4) M(s,x) (2) T(s,x) (3) L(s,x) The related symbols around the corner
82
81 kernelLaplace equationHelmholtz equation U(s,x)U(s,x) T(s,x) L(s,x) M(s,x) Free terms
83
82 Conclusions The nonuniqueness in BIEM and BEM were reviewed and its treatment was addressed. The role of hypersingular BIE was examined. The numerical problems in the engineering applications using BEM were demonstrated. Several mathematical tools, SVD, degenerate kernel, …, were employed to deal with the problems.
84
83 The End Thanks for your kind attention
85
84 歡迎參觀海洋大學力學聲響振動實驗室 烘焙雞及捎來伊妹兒 http://ind.ntou.edu.tw/~msvlab/ E-mail: jtchen@mail.ntou.edu.tw
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.