Presentation is loading. Please wait.

Presentation is loading. Please wait.

Thermally-Driven Circulations in Mountain Terrain.

Similar presentations


Presentation on theme: "Thermally-Driven Circulations in Mountain Terrain."— Presentation transcript:

1 Thermally-Driven Circulations in Mountain Terrain

2 Slope Winds Terminology of slope winds Upslope winds and downslope winds Upslope winds are often called ‘anabatic winds’ Downslope winds also called: drainage winds, katabatic winds

3 Theory of air drainage has a long history Fleagle (1950) derived momentum equations for A fluid cooling at the bottom of a sloped surface. Manins and Sawford (1979) Horst and Doran (1986)

4  1T11T1 2T22T2 cold warm x z T 1 < T 2 PGF  1 >  2 = Buoyancy Figure 1. Basic mechanisms of downslope winds (Adapted from Atkinson, 1981)

5 I where u and w are velocity components in the x and z directions,  r is a reference density, p is the pressure, g is gravitational force, d is the potential temperature deficit in the flow,  r is the reference potential temperature, and  is the slope angle. Term I is the storage of momentum, term II is advection, term III is the horizontal pressure gradient force, term IV is the buoyancy force, term V is the turbulent momentum flux. Momentum budget for slope flow IIIIIIVV

6 I where  v is virtual potential temperature, Cp is the gas constant for dry air at constant pressure, R is the outgoing radiation flux, and is the turbulent sensible heat flux. The local rate of heat storage (term I) results from an imbalance of convergence of virtual potential temperature by advection (term II), radiative flux divergence (term III), and the divergence of turbulent sensible heat flux (term IV). Heat budget for slope flow IIIIIIV

7 The budget equations for pure katabatic flow have been derived for simple situations assuming horizontally homogenous depth along a slope of infinite length. The slope angle for katabatic flows has been assumed to be very small in the theoretical framework, and thus the flow to be in hydrostatic balance. Manins and Sawford (1979b) suggested that even in very mountainous terrain, ‘extensive’ slopes were rarely above 10 . Furthermore, the cooling is based on the three terms (II, III, and IV) in (1.2).

8 Horst and Doran 1986

9 Downslope flows (drainage flows) Meteor Crater 2006

10 Campfire smoke plume-Shallow inversion Layer

11

12

13

14

15

16

17 Whiteman(2000)

18


Download ppt "Thermally-Driven Circulations in Mountain Terrain."

Similar presentations


Ads by Google