Download presentation
Presentation is loading. Please wait.
1
Randomized Algorithms Prof. Dr. Th. Ottmann University of Freiburg ottmann@informatik.uni-freiburg.de
2
2 Classes of Randomised Algorithms Las Vegas type Yield always a correct result. For a specific input: Performance (runtime) may be bad, but the extected runtime is good! Example: Randomised version of Quicksort Monte Carlo type (most correctly): May produce an incorrect result (with a certain error probability). For each specific input: (Worst case) runtime is good Example: Randomised primality test.
3
3 Quicksort A[l … r-1]p pA[l...m – 1]A[m + 1...r] Quicksort Unsorted part A[l,r] in an array A
4
4 Quicksort Algorithm: Quicksort Input: unsorted part [l, r] of an array A Output: sorted part [l, r] of the array A 1if r > l 2 then choose pivot-element p = A[r] 3 m = divide(A, l, r) /* partition Awith respect to p: A[l],....,A[m – 1] p A[m + 1],...,A[r] */ 4Quicksort(A, l, m - 1) Quicksort (A, m + 1, r)
5
5 Division of the Array l r
6
6 Division divide(A, l, r): Yields the index of the pivot elements in A Can be carried out in time O(r – l)
7
7 Worst-Case-Input n elements: Runtime: (n-1) + (n-2) + … + 2 + 1 = n(n-1)/2
8
8 Randomised Version of Quicksort Algorithmus: Quicksort Input: unsorted part [l, r] of an array A Output: sorted part [l, r] of the array A if r > l then ramdomly choose a pivot-element p = A[i] in the part [l, r] of the array; exchange A[ i] and A[r]; m = divide(A, l, r); /* divide A with respect to p: A[l],....,A[m – 1] p A[m + 1],...,A[r] */ Quicksort(A, l, m - 1); Quicksort(A, m + 1, r)
9
9 Primality Test Definition: The natural number p 2 is prime, iff a | p implies a = 1 or a = p. Algorithm: Deterministic primality test (naive version) Input: A natural number n 2 Output: Answer to the question: Is n prime? if n = 2 then return true; if n even then return false; for i = 1 to n/2 do if 2i + 1 divides n then return false return true Runtime: n)
10
10 Primality Test Goal: Randomised algorithm With polynomial runtime If the algorithm yields the answer “not prime”, then n is definitely not prime. If the algorithm yields the answer “prime”, then this answer is wrong with a certain error probability p>0, i.e. n is prime with a certain probability (1- p) only. k iterations of the algorithm: the algorithm yields the wrong answer with probability p k only.
11
11 Randomised Primality Test Theorem 1: (Fermat‘s theorem) Is p prim and 1 < a < p, then a p-1 mod p = 1. Theorem 2: Is p prim and 0 < a < p, then the equation a 2 mod p = 1 Has exactly two solutions, namely a = 1 und a = p – 1. Randomised algorithm: Choose an a with 1 < a < p randomly and check whether it fulfills the test of theorem 1; while computing a p-1 simultaneously check whether the test of theorem 2 is fulfilled for all numbers occurring during the computation of a p-1 using the fast exponentiation method.
12
12 Randomisierter Primzahltest Algorithmus: Randomisierter Primzahltest 1 1 Wähle a im Bereich [2, n-1] zufällig 2 Berechne a n-1 mod n 3 if a n-1 mod n = 1 4 then n ist möglicherweise prim 5 else n ist definitiv nicht prim Prob(n ist nicht prim, aber a n-1 mod n = 1 ) ?
13
13 Randomised Primality Test Theorem: Is n not prime, then there are at most n – 4/ 9 numbers 0 < a < n, such that the randomized algorithm for primality testing yields the wrong result.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.