Download presentation
Presentation is loading. Please wait.
1
CS 140 Lecture 6 Professor CK Cheng Tuesday 10/15/02
2
Part I. Combinational Logic –Implementation K-map Quine-McCluskey
3
Quine-McCluskey Method Given F R D find min sum of products 1)Exploit the adjacency to find primes 2)Prime implicant chart
4
Example Id a b c d f (a,b,c,d) 0 0 0 0 0 1 1 0 0 0 1 1 2 0 0 1 0 1 3 0 0 1 1 0 4 0 1 0 0 0 5 0 1 0 1 0 6 0 1 1 0 0 7 0 1 1 1 0 8 1 0 0 0 1 9 1 0 0 1 - 10 1 0 1 0 - 11 1 0 1 1 0 12 1 1 0 0 0 13 1 1 0 1 0 14 1 1 1 0 1 15 1 1 1 1 0 Given f(a,b,c,d) w/ F = m(0,1,2,8,14) D = m(9,10)
5
Corresponding 4-variable K-map f (a, b, c, d) = b’c’ + b’d’ + acd’ d a c b 1 0 0 1 1 0 0 - 0 0 0 0 1 0 1 - 0 1 3 2 4 5 7 6 12 13 15 14 8 9 11 10
6
Using Quine-McCluskey 1)Draw truth table that only include F and D. Order by The number of ones. Divide by regions. Id 0 1 2 8 9 10 14 a0001111a0001111 b0000001b0000001 c0010011c0010011 d0100100d0100100 f1111--1f1111--1 I II III IV
7
Continue again, pairing up rows from adjacent regions if they differ by exactly one bit. Put a dash where they do differ. (0,1) (0,2) (0,8) (1,9) (2,10) (8,9) (8,10) (10,14) a00---111a00---111 b0000000-b0000000- c0-0010-1c0-0010-1 d-0010000d-0010000 I&II II&III III&IV
8
Continuing again. We stop when we can no longer combine rows. We make sure that we cover the entire onset. (0,1,8,9) (0,2,8,10) (10,14) a--1a--1 b00-b00- c0-1c0-1 d-00d-00 Primes m(0,1,8,9) m(0,2,8,10) m(10,14) From here we can draw out the prime implicant chart. The top part corresponds to the onset, the side is the primes we have. Circle essential. m(0,1,8,9) m(0,2,8,10) m(10,14) m0 X m1 X m2 X m8 X m14 X f(a,b,c,d) = m(0,1,8,9) + m(0,2,8,10) + m(10,14) f (a,b,c,d) = b’c’ + b’d’ + acd’
9
Another example Id a b c d f (a,b,c,d) 0 0 0 0 0 1 1 0 0 0 1 0 2 0 0 1 0 1 3 0 0 1 1 0 4 0 1 0 0 1 5 0 1 0 1 0 6 0 1 1 0 0 7 0 1 1 1 1 8 1 0 0 0 1 9 1 0 0 1 - 10 1 0 1 0 0 11 1 0 1 1 0 12 1 1 0 0 - 13 1 1 0 1 0 14 1 1 1 0 0 15 1 1 1 1 1 Given f(a,b,c,d) w/ F = m(0,2,4,7,8,15) D = m(9,12)
10
Id 0 2 4 8 9 12 7 15 a00011101a00011101 b00100111b00100111 c01000011c01000011 d00001011d00001011 I II III IV V (0,2) (0,4) (0,8) (4,12) (8,9) (8,12) (7,15) a00--11-a00--11- b0-010-1b0-010-1 c-000001c-000001 d0000-01d0000-01 (0,4,8,12) - - 0 0 m(0,2) m(7,15) m(0,4,8,12) m0 X m2 X m4 X m7 X m8 X m15 X f(a,b,c,d) = m(0,2) + m(0,4,8,12) + m(7,15) f (a,b,c,d) = a’b’d + bcd + c’d’
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.