Download presentation
Presentation is loading. Please wait.
1
Improve Migration Image Quality by 3-D Migration Deconvolution Jianhua Yu, Gerard T. Schuster University of Utah
2
Motivation Outline Migration Deconvolution Examples Conclusions Implementation of MD
3
Migration noise and artifacts Seismic Migration Noise 0.5 3.5 Depth (km) Footprint Weak illumination
4
Limit recording aperture What Affects Seismic Migration Quality Irregular acquisition geometry Incorrect velocity High order phenomenon: anisotropy, attenuation etc. Bandlimited wavelet
5
Noise and artifacts Migration Image suffers from Poor spatial resolution Non-uniform illumination
6
Objective : Develop 3-D migration deconvolution Limit recording aperture Irregular acquisition geometry to deblur the influence of
7
Objective : Improving spatial resolution Enhancing illumination Suppressing migration noise and artifacts
8
Motivation Outline Migration Deconvolution (MD) Examples Conclusions Implementation of MD
9
m = G d T but d = G R Migrated Section Data G R m = PSF(R) m = PSF(R) Migration image = Blurred image of Migration image = Blurred image of true reflectivity model true reflectivity model Migration operator Migration Deconvolution Theory
10
m R GG T Migration imageReflectivity Migration Green’s function Migration Deconvolution Theory
11
m R GG T GG T ][ GG T ][ 1 1 Migration Deconvolution Theory
12
m R GG T ][ 1 Migration Deconvolution Theory Migration Green’s function (Schuster et al., 2000)
13
Migration Deconvolution Theory
14
Lateral shift invariant migration Green’s function Reduction of MD cost --- Reference position of migration Green’s function In wavenumber-space domain:
15
Motivation Outline Migration Deconvolution (MD) Examples Conclusions Implementation of MD
16
MD Implementation Steps: Step 1: Prepare traveltime table Velocity cube Acquisition geometry information Step 2: Calculate the migration Green’s function at the depth Zi
17
Step 3: Obtain MD image at the depth Z i by solving following equation MD Implementation Steps: Step 4: Repeat Steps 2-3 until the maximum depth is finished
18
Motivation Outline Migration Deconvolution (MD) Examples: Synthetic data Conclusions Implementation of MD
19
Recording Geometry : Sources : Receivers
20
0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) MIG MD Z=1 km Z=3 km Z=5 km Depth Slices
21
0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) MIG MD Z=7 km Z=9 km Z=10 km Depth Slices
22
0 2.5 km 0 Meandering Stream Model 2.5 km 5 x 1 Sources; 11 x 7 Receivers 3.5 km
23
Mig MD Model 0 Y (km) X (km) 2.5 0 Z=3.5 KM
24
VSP Geometry : source 21 x 21; geophone: 12 Depth=1.75 km MigrationMD
25
GOM Velocity Model X (km) Depth (km) 12 0 210
26
X (km) Depth (km) 10 8 4 X (km) 410 MigrationMigration+MD
27
X (km) Depth (km) 10 8.5 410 X (km) 410 MigrationMigration+M D
28
0 12.2 km 0 3-D SEG/EAGE Salt Model 12.2 km 9 x 5 Sources; dxshot=dyshot=1 km 201 x 201 Receivers Imaging: dx=dy=20 m
29
3-D SEG/EAGE Salt Model X (km)Y (km) Y=7.12 km
30
Mig z = 1.4 km MD X (km) 3 10 Y (km) 59.85 X (km)
31
Mig (z=1.2 km) X (km) 3 10 Y (km) 59.85 X (km) MD (z=1.2 km)
32
X (km) 020 3 10 Depth (km) Sigsbee2B Model
33
X (km) 020 2.5 10 Depth (km) Mig
34
X (km) 020 2.5 10 Depth (km) MD
35
5 10 Depth (km) Mig. MD
36
Motivation Outline Migration Deconvolution (MD) Examples: 2-D field data Conclusions Implementation of MD
37
PS PSTM Image ( by Unocal) 0 6 X (km) 0 8 Time (s)
38
0 6 X (km) 0 8 Time (s) MD PSTM(courtesy of Unocal) PSTMD
39
0 6 X (km) 3 8 Time (s) MD PSTM(courtesy of Unocal) PSTMD
40
MD Time (s) Mig (courtesy of Aramco)
41
Time (s) Mig (Courtesy of Aramco)MD
42
Mig (Courtesy of Aramco)MD
43
Motivation Outline Migration Deconvolution (MD) Examples: 3-D field data Conclusions Implementation of MD
44
1.6 s Inline Crossline 3D PSTM (courtesy of Unocal) MD
45
2.0 s Crossline 3D PSTM (courtesy of Unocal) MD
46
3.0 Mig in Inline (Courtesy of Unocal) MD Times (s) 1.2
47
Mig (Courtesy of Unocal) MD Inline Number 1901 1 300 Crossline Number Inline Number (2 kft)
48
(3.6 kft) Inline Number 1901 1 265 Crossline Number Inline Number Mig MD
49
Inline Number 190 1.1 7.0 Depth (kft) 90Inline Number1 (Crossline=50) Mig (courtesy of Unocal)MD
50
(crossline 200) 1901 1.1 8.0 Depth (kft) Mig (courtesy of Unocal)MD Inline Number
51
Motivation Outline Migration Deconvolution (MD) Examples Conclusions Implementation of MD
52
Conclusions Suppress migration noise Improve spatial resolution MD cost is related to acquisition geometry V(z) assumption for moderately complex models
53
Acknowledgements UTAM Sponsors SMAART Joint Venture Aramco, Aramco, BP and Unocal
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.