Download presentation
1
Chapter 7 Network Flow Models
2
Shortest Route Problem
Given distances between nodes, find the shortest route between any pair of nodes.
3
Example: p.282 (291)
4
Solution Methods Dijkstra algorithm: Using QM: Introduced in book.
Not required for this course Using QM: Required for this course Data input format -
5
Discussion What if the ‘cost’, instead of ‘distance’, between two nodes are given, and we want to find the ‘lowest-cost route’ from a starting node to a destination node? What if the cost from a to b is different from the cost from b to a? (QM does not handle this situation.)
6
Minimal Spanning Tree Problem
Given costs (distances) between nodes, find a network (actually a “tree”) that covers all the nodes with minimum total cost. Applications:
7
Example: p.290 (299) Solution Method: Using QM.
8
Shortest Route vs. Minimal Spanning
The minimal spanning tree problem is to identify a set of connected arcs that cover all nodes. The shortest route problem is to identify a route from a particular node to another, which typically does not pass through every node.
9
Maximal Flow Problem Given flow-capacities between nodes, find the maximum amount of flows that can go from the origin node to the destination node through the network. Applications:
10
Example: p.294 (303) Solution Method: Using QM.
11
Network Flow Problem Solving
Given a problem, we need to tell what ‘problem’ it is (shortest route, minimal spanning tree, or maximal flow); then use the corresponding module in QM to solve it.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.