Download presentation
Presentation is loading. Please wait.
1
Bubble Sort Merge Sort
2
Bubble Sort
3
Sorting Sorting takes an unordered collection and makes it an ordered one. 5 12 3542 77 101 1 2 3 4 5 6 5 12 35 42 77101 1 2 3 4 5 6
4
"Bubbling Up" the Largest Element Traverse a collection of elements –Move from the front to the end –“Bubble” the largest value to the end using pair-wise comparisons and swapping 5 12 3542 77 101 1 2 3 4 5 6
5
"Bubbling Up" the Largest Element Traverse a collection of elements –Move from the front to the end –“Bubble” the largest value to the end using pair-wise comparisons and swapping 5 12 3542 77 101 1 2 3 4 5 6 Swap 4277
6
"Bubbling Up" the Largest Element Traverse a collection of elements –Move from the front to the end –“Bubble” the largest value to the end using pair-wise comparisons and swapping 5 12 3577 42 101 1 2 3 4 5 6 Swap 3577
7
"Bubbling Up" the Largest Element Traverse a collection of elements –Move from the front to the end –“Bubble” the largest value to the end using pair-wise comparisons and swapping 5 12 7735 42 101 1 2 3 4 5 6 Swap 1277
8
"Bubbling Up" the Largest Element Traverse a collection of elements –Move from the front to the end –“Bubble” the largest value to the end using pair-wise comparisons and swapping 5 77 1235 42 101 1 2 3 4 5 6 No need to swap
9
"Bubbling Up" the Largest Element Traverse a collection of elements –Move from the front to the end –“Bubble” the largest value to the end using pair-wise comparisons and swapping 5 77 1235 42 101 1 2 3 4 5 6 Swap 5101
10
"Bubbling Up" the Largest Element Traverse a collection of elements –Move from the front to the end –“Bubble” the largest value to the end using pair-wise comparisons and swapping 77 1235 42 5 1 2 3 4 5 6 101 Largest value correctly placed
11
The “Bubble Up” Algorithm index <- 1 last_compare_at <- n – 1 loop exitif(index > last_compare_at) if(A[index] > A[index + 1]) then Swap(A[index], A[index + 1]) endif index <- index + 1 endloop
12
No, Swap isn’t built in. Procedure Swap(a, b isoftype in/out Num) t isoftype Num t <- a a <- b b <- t endprocedure // Swap LB
13
Items of Interest Notice that only the largest value is correctly placed All other values are still out of order So we need to repeat this process 77 1235 42 5 1 2 3 4 5 6 101 Largest value correctly placed
14
Repeat “Bubble Up” How Many Times? If we have N elements… And if each time we bubble an element, we place it in its correct location… Then we repeat the “bubble up” process N – 1 times. This guarantees we’ll correctly place all N elements.
15
“Bubbling” All the Elements 77 1235 42 5 1 2 3 4 5 6 101 5 4212 35 77 1 2 3 4 5 6 10142 5 35 12 77 1 2 3 4 5 6 10142 35 5 12 77 1 2 3 4 5 6 10142 35 12 5 77 1 2 3 4 5 6 101 N - 1
16
Reducing the Number of Comparisons 12 35 42 77 101 1 2 3 4 5 6 577 1235 42 5 1 2 3 4 5 6 101 5 4212 35 77 1 2 3 4 5 6 10142 5 35 12 77 1 2 3 4 5 6 10142 35 5 12 77 1 2 3 4 5 6 101
17
Reducing the Number of Comparisons On the N th “bubble up”, we only need to do MAX-N comparisons. For example: –This is the 4 th “bubble up” –MAX is 6 –Thus we have 2 comparisons to do 42 5 35 12 77 1 2 3 4 5 6 101
18
Putting It All Together
19
N is … // Size of Array Arr_Type definesa Array[1..N] of Num Procedure Swap(n1, n2 isoftype in/out Num) temp isoftype Num temp <- n1 n1 <- n2 n2 <- temp endprocedure // Swap
20
procedure Bubblesort(A isoftype in/out Arr_Type) to_do, index isoftype Num to_do <- N – 1 loop exitif(to_do = 0) index <- 1 loop exitif(index > to_do) if(A[index] > A[index + 1]) then Swap(A[index], A[index + 1]) endif index <- index + 1 endloop to_do <- to_do - 1 endloop endprocedure // Bubblesort Inner loop Outer loop
21
Already Sorted Collections? What if the collection was already sorted? What if only a few elements were out of place and after a couple of “bubble ups,” the collection was sorted? We want to be able to detect this and “stop early”! 42 35 12 5 77 1 2 3 4 5 6 101
22
Using a Boolean “Flag” We can use a boolean variable to determine if any swapping occurred during the “bubble up.” If no swapping occurred, then we know that the collection is already sorted! This boolean “flag” needs to be reset after each “bubble up.”
23
did_swap isoftype Boolean did_swap <- true loop exitif ((to_do = 0) OR NOT(did_swap)) index <- 1 did_swap <- false loop exitif(index > to_do) if(A[index] > A[index + 1]) then Swap(A[index], A[index + 1]) did_swap <- true endif index <- index + 1 endloop to_do <- to_do - 1 endloop
24
An Animated Example 674523146339842 1 2 3 4 5 6 7 8 to_do index 7 N 8 did_swap true
25
An Animated Example 674523146339842 1 2 3 4 5 6 7 8 to_do index 7 1 N 8 did_swap false
26
An Animated Example 674523146339842 1 2 3 4 5 6 7 8 to_do index 7 1 N 8 Swap did_swap false
27
An Animated Example 674598146332342 1 2 3 4 5 6 7 8 to_do index 7 1 N 8 Swap did_swap true
28
An Animated Example 674598146332342 1 2 3 4 5 6 7 8 to_do index 7 2 N 8 did_swap true
29
An Animated Example 674598146332342 1 2 3 4 5 6 7 8 to_do index 7 2 N 8 Swap did_swap true
30
An Animated Example 679845146332342 1 2 3 4 5 6 7 8 to_do index 7 2 N 8 Swap did_swap true
31
An Animated Example 679845146332342 1 2 3 4 5 6 7 8 to_do index 7 3 N 8 did_swap true
32
An Animated Example 679845146332342 1 2 3 4 5 6 7 8 to_do index 7 3 N 8 Swap did_swap true
33
An Animated Example 671445986332342 1 2 3 4 5 6 7 8 to_do index 7 3 N 8 Swap did_swap true
34
An Animated Example 671445986332342 1 2 3 4 5 6 7 8 to_do index 7 4 N 8 did_swap true
35
An Animated Example 671445986332342 1 2 3 4 5 6 7 8 to_do index 7 4 N 8 Swap did_swap true
36
An Animated Example 671445698332342 1 2 3 4 5 6 7 8 to_do index 7 4 N 8 Swap did_swap true
37
An Animated Example 671445698332342 1 2 3 4 5 6 7 8 to_do index 7 5 N 8 did_swap true
38
An Animated Example 671445698332342 1 2 3 4 5 6 7 8 to_do index 7 5 N 8 Swap did_swap true
39
An Animated Example 981445667332342 1 2 3 4 5 6 7 8 to_do index 7 5 N 8 Swap did_swap true
40
An Animated Example 981445667332342 1 2 3 4 5 6 7 8 to_do index 7 6 N 8 did_swap true
41
An Animated Example 981445667332342 1 2 3 4 5 6 7 8 to_do index 7 6 N 8 Swap did_swap true
42
An Animated Example 331445667982342 1 2 3 4 5 6 7 8 to_do index 7 6 N 8 Swap did_swap true
43
An Animated Example 331445667982342 1 2 3 4 5 6 7 8 to_do index 7 7 N 8 did_swap true
44
An Animated Example 331445667982342 1 2 3 4 5 6 7 8 to_do index 7 7 N 8 Swap did_swap true
45
An Animated Example 331445667422398 1 2 3 4 5 6 7 8 to_do index 7 7 N 8 Swap did_swap true
46
After First Pass of Outer Loop 331445667422398 1 2 3 4 5 6 7 8 to_do index 7 8 N 8 Finished first “Bubble Up” did_swap true
47
The Second “Bubble Up” 331445667422398 1 2 3 4 5 6 7 8 to_do index 6 1 N 8 did_swap false
48
The Second “Bubble Up” 331445667422398 1 2 3 4 5 6 7 8 to_do index 6 1 N 8 did_swap false No Swap
49
The Second “Bubble Up” 331445667422398 1 2 3 4 5 6 7 8 to_do index 6 2 N 8 did_swap false
50
The Second “Bubble Up” 331445667422398 1 2 3 4 5 6 7 8 to_do index 6 2 N 8 did_swap false Swap
51
The Second “Bubble Up” 334514667422398 1 2 3 4 5 6 7 8 to_do index 6 2 N 8 did_swap true Swap
52
The Second “Bubble Up” 334514667422398 1 2 3 4 5 6 7 8 to_do index 6 3 N 8 did_swap true
53
The Second “Bubble Up” 334514667422398 1 2 3 4 5 6 7 8 to_do index 6 3 N 8 did_swap true Swap
54
The Second “Bubble Up” 336144567422398 1 2 3 4 5 6 7 8 to_do index 6 3 N 8 did_swap true Swap
55
The Second “Bubble Up” 336144567422398 1 2 3 4 5 6 7 8 to_do index 6 4 N 8 did_swap true
56
The Second “Bubble Up” 336144567422398 1 2 3 4 5 6 7 8 to_do index 6 4 N 8 did_swap true No Swap
57
The Second “Bubble Up” 336144567422398 1 2 3 4 5 6 7 8 to_do index 6 5 N 8 did_swap true
58
The Second “Bubble Up” 336144567422398 1 2 3 4 5 6 7 8 to_do index 6 5 N 8 did_swap true Swap
59
The Second “Bubble Up” 676144533422398 1 2 3 4 5 6 7 8 to_do index 6 5 N 8 did_swap true Swap
60
The Second “Bubble Up” 676144533422398 1 2 3 4 5 6 7 8 to_do index 6 6 N 8 did_swap true
61
The Second “Bubble Up” 676144533422398 1 2 3 4 5 6 7 8 to_do index 6 6 N 8 did_swap true Swap
62
The Second “Bubble Up” 426144533672398 1 2 3 4 5 6 7 8 to_do index 6 6 N 8 did_swap true Swap
63
After Second Pass of Outer Loop 426144533672398 1 2 3 4 5 6 7 8 to_do index 6 7 N 8 did_swap true Finished second “Bubble Up”
64
The Third “Bubble Up” 426144533672398 1 2 3 4 5 6 7 8 to_do index 5 1 N 8 did_swap false
65
The Third “Bubble Up” 426144533672398 1 2 3 4 5 6 7 8 to_do index 5 1 N 8 did_swap false Swap
66
The Third “Bubble Up” 426234533671498 1 2 3 4 5 6 7 8 to_do index 5 1 N 8 did_swap true Swap
67
The Third “Bubble Up” 426234533671498 1 2 3 4 5 6 7 8 to_do index 5 2 N 8 did_swap true
68
The Third “Bubble Up” 426234533671498 1 2 3 4 5 6 7 8 to_do index 5 2 N 8 did_swap true Swap
69
The Third “Bubble Up” 422364533671498 1 2 3 4 5 6 7 8 to_do index 5 2 N 8 did_swap true Swap
70
The Third “Bubble Up” 422364533671498 1 2 3 4 5 6 7 8 to_do index 5 3 N 8 did_swap true
71
The Third “Bubble Up” 422364533671498 1 2 3 4 5 6 7 8 to_do index 5 3 N 8 did_swap true No Swap
72
The Third “Bubble Up” 422364533671498 1 2 3 4 5 6 7 8 to_do index 5 4 N 8 did_swap true
73
The Third “Bubble Up” 422364533671498 1 2 3 4 5 6 7 8 to_do index 5 4 N 8 did_swap true Swap
74
The Third “Bubble Up” 422363345671498 1 2 3 4 5 6 7 8 to_do index 5 4 N 8 did_swap true Swap
75
The Third “Bubble Up” 422363345671498 1 2 3 4 5 6 7 8 to_do index 5 5 N 8 did_swap true
76
The Third “Bubble Up” 422363345671498 1 2 3 4 5 6 7 8 to_do index 5 5 N 8 did_swap true Swap
77
The Third “Bubble Up” 452363342671498 1 2 3 4 5 6 7 8 to_do index 5 5 N 8 did_swap true Swap
78
After Third Pass of Outer Loop 452363342671498 1 2 3 4 5 6 7 8 to_do index 5 6 N 8 did_swap true Finished third “Bubble Up”
79
The Fourth “Bubble Up” 452363342671498 1 2 3 4 5 6 7 8 to_do index 4 1 N 8 did_swap false
80
The Fourth “Bubble Up” 452363342671498 1 2 3 4 5 6 7 8 to_do index 4 1 N 8 did_swap false Swap
81
The Fourth “Bubble Up” 452314334267698 1 2 3 4 5 6 7 8 to_do index 4 1 N 8 did_swap true Swap
82
The Fourth “Bubble Up” 452314334267698 1 2 3 4 5 6 7 8 to_do index 4 2 N 8 did_swap true
83
The Fourth “Bubble Up” 452314334267698 1 2 3 4 5 6 7 8 to_do index 4 2 N 8 did_swap true No Swap
84
The Fourth “Bubble Up” 452314334267698 1 2 3 4 5 6 7 8 to_do index 4 3 N 8 did_swap true
85
The Fourth “Bubble Up” 452314334267698 1 2 3 4 5 6 7 8 to_do index 4 3 N 8 did_swap true No Swap
86
The Fourth “Bubble Up” 452314334267698 1 2 3 4 5 6 7 8 to_do index 4 4 N 8 did_swap true
87
The Fourth “Bubble Up” 452314334267698 1 2 3 4 5 6 7 8 to_do index 4 4 N 8 did_swap true No Swap
88
After Fourth Pass of Outer Loop 452314334267698 1 2 3 4 5 6 7 8 to_do index 4 5 N 8 did_swap true Finished fourth “Bubble Up”
89
The Fifth “Bubble Up” 452314334267698 1 2 3 4 5 6 7 8 to_do index 3 1 N 8 did_swap false
90
The Fifth “Bubble Up” 452314334267698 1 2 3 4 5 6 7 8 to_do index 3 1 N 8 did_swap false No Swap
91
The Fifth “Bubble Up” 452314334267698 1 2 3 4 5 6 7 8 to_do index 3 2 N 8 did_swap false
92
The Fifth “Bubble Up” 452314334267698 1 2 3 4 5 6 7 8 to_do index 3 2 N 8 did_swap false No Swap
93
The Fifth “Bubble Up” 452314334267698 1 2 3 4 5 6 7 8 to_do index 3 3 N 8 did_swap false
94
The Fifth “Bubble Up” 452314334267698 1 2 3 4 5 6 7 8 to_do index 3 3 N 8 did_swap false No Swap
95
After Fifth Pass of Outer Loop 452314334267698 1 2 3 4 5 6 7 8 to_do index 3 4 N 8 did_swap false Finished fifth “Bubble Up”
96
Finished “Early” 452314334267698 1 2 3 4 5 6 7 8 to_do index 3 4 N 8 did_swap false We didn’t do any swapping, so all of the other elements must be correctly placed. We can “skip” the last two passes of the outer loop.
97
Summary “Bubble Up” algorithm will move largest value to its correct location (to the right) Repeat “Bubble Up” until all elements are correctly placed: –Maximum of N-1 times –Can finish early if no swapping occurs We reduce the number of elements we compare each time one is correctly placed
98
Truth in CS Act NOBODY EVER USES BUBBLE SORT NOBODY NOT EVER BECAUSE IT IS EXTREMELY INEFFICIENT LB
99
Questions?
100
Mergesort
101
Sorting Sorting takes an unordered collection and makes it an ordered one. 5 12 3542 77 101 1 2 3 4 5 6 5 12 35 42 77101 1 2 3 4 5 6
102
Divide and Conquer Divide and Conquer cuts the problem in half each time, but uses the result of both halves: –cut the problem in half until the problem is trivial –solve for both halves –combine the solutions
103
Mergesort A divide-and-conquer algorithm: Divide the unsorted array into 2 halves until the sub-arrays only contain one element Merge the sub-problem solutions together: –Compare the sub-array’s first elements –Remove the smallest element and put it into the result array –Continue the process until all elements have been put into the result array 3723 6 8915 12 2 19
104
How to Remember Merge Sort? That’s easy. Just remember Mariah Carey. As a singing star, Ms. Carey has perfected the “wax-on” wave motion--a clockwise sweep of her hand used to emphasize lyrics. The Maria “Wax-on” Angle: ( ,t) The Siren of Subquadratic Sorts
105
How To Remember Merge Sort? Just as Mariah recursively moves her hands into smaller circles, so too does merge sort recursively split an array into smaller segments. ( ,t) We need two such recursions, one for each half of the split array.
106
Algorithm Mergesort(Passed an array) if array size > 1 Divide array in half Call Mergesort on first half. Call Mergesort on second half. Merge two halves. Merge(Passed two arrays) Compare leading element in each array Select lower and place in new array. (If one input array is empty then place remainder of other array in output array)
107
More TRUTH in CS We don’t really pass in two arrays! We pass in one array with indicator variables which tell us where one set of data starts and finishes and where the other set of data starts and finishes. Honest. s1f1s2f2 LB
108
Algorithm Mergesort(Passed an array) if array size > 1 Divide array in half Call Mergesort on first half. Call Mergesort on second half. Merge two halves. Merge(Passed two arrays) Compare leading element in each array Select lower and place in new array. (If one input array is empty then place remainder of other array in output array) LB
109
674523146339842
110
674523146339842 674523146339842
111
674523146339842 674523146339842 45231498
112
674523146339842 674523146339842 45231498 2398
113
674523146339842 674523146339842 45231498 2398 Merge
114
674523146339842 674523146339842 45231498 2398 23 Merge
115
674523146339842 674523146339842 45231498 2398 2398 Merge
116
674523146339842 674523146339842 45231498 23984514 2398
117
674523146339842 674523146339842 45231498 23984514 Merge 2398
118
674523146339842 674523146339842 45231498 23984514 Merge 2398
119
674523146339842 674523146339842 45231498 23984514 45 Merge 239814
120
674523146339842 674523146339842 45231498 23984514 Merge 98451423
121
674523146339842 674523146339842 45231498 23984514 Merge 9814 2345
122
674523146339842 674523146339842 45231498 23984514 Merge 2314 23 9845
123
674523146339842 674523146339842 45231498 23984514 Merge 23984514 2345
124
674523146339842 674523146339842 45231498 23984514 Merge 23984514 234598
125
674523146339842 674523146339842 45231498 23984514 6763342 23984514 234598
126
674523146339842 674523146339842 45231498 23984514 6763342 676 23984514 234598
127
674523146339842 674523146339842 45231498 23984514 6763342 676 Merge 23984514 234598
128
674523146339842 674523146339842 45231498 23984514 6763342 676 6 Merge 23984514 234598
129
674523146339842 674523146339842 45231498 23984514 6763342 676 Merge 239845146 234598
130
674523146339842 674523146339842 45231498 23984514 6763342 6763342 23984514676 14234598
131
674523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 23984514676 14234598
132
674523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 3323984514676 14234598
133
674523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 422398451467633 14234598
134
674523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 239845146764233 14234598
135
674523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 2398451464233 14234598 6 67
136
4523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 23984514633 14234598 633 6742
137
674523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 2398451464233 14234598 63342 67
138
4523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 239845146764233 14234598 6334267
139
4523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 239845146764233 234598 334267 14 6
140
674523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 239845146764233 234598 64267 6 14 33
141
674523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 239845146764233 144598 64267 614 23 33
142
674523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 239845146764233 142398 64267 61423 45 33
143
674523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 239845146764233 142398 63367 6142333 45 42
144
674523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 239845146764233 142398 63342 614233342 45 67
145
4523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 239845146764233 142345 63342 61423334245 98 67
146
4523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 239845146764233 14234598 6334267 6142333424567
147
4523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 239845146764233 14234598 6334267 614233342456798
148
674523146339842 674523146339842 45231498 23984514 6763342 6763342 239845146764233 14234598 6334267 614233342456798
149
674523146339842 614233342456798
150
Summary Divide the unsorted collection into two Until the sub-arrays only contain one element Then merge the sub-problem solutions together
151
Questions?
152
Review?
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.