Download presentation
Presentation is loading. Please wait.
1
MATH 577http://amadeus.math.iit.edu/~fass1 3.2 The Secant Method Recall Newton’s method Main drawbacks: requires coding of the derivative requires evaluation of and in every iteration Work-around Approximate derivative with difference quotient:
2
MATH 577http://amadeus.math.iit.edu/~fass2 Secant Method
3
MATH 577http://amadeus.math.iit.edu/~fass3 Graphical Interpretation
4
MATH 577http://amadeus.math.iit.edu/~fass4 Graphical Interpretation
5
MATH 577http://amadeus.math.iit.edu/~fass5 Convergence Analysis
6
MATH 577http://amadeus.math.iit.edu/~fass6 Proof of Theorem 3.2
7
MATH 577http://amadeus.math.iit.edu/~fass7 Proof of Theorem 3.2 (cont.)
8
MATH 577http://amadeus.math.iit.edu/~fass8 Proof of Theorem 3.2 (cont.)
9
MATH 577http://amadeus.math.iit.edu/~fass9 Proof of Theorem 3.2 (cont.)
10
MATH 577http://amadeus.math.iit.edu/~fass10 Proof of Theorem 3.2 (cont.) earlier formula
11
MATH 577http://amadeus.math.iit.edu/~fass11 Proof of Theorem 3.2 (Exact order)
12
MATH 577http://amadeus.math.iit.edu/~fass12 Proof of Theorem 3.2 (Exact order) (*)(*):
13
MATH 577http://amadeus.math.iit.edu/~fass13 Proof of Theorem 3.2 (Exact order)
14
MATH 577http://amadeus.math.iit.edu/~fass14 Proof of Theorem 3.2 (Exact order) (cf. Theorem)Theorem
15
MATH 577http://amadeus.math.iit.edu/~fass15 Comparison of Root Finding Methods Other facts: bisection method always converges Newton’s method requires coding of derivative
16
MATH 577http://amadeus.math.iit.edu/~fass16 Newton vs. Secant (“Fair” Comparison)
17
MATH 577http://amadeus.math.iit.edu/~fass17 Generalizations of the Secant Method
18
MATH 577http://amadeus.math.iit.edu/~fass18 Müller’s Method
19
MATH 577http://amadeus.math.iit.edu/~fass19 Müller’s Method (cont.) Features: Can locate complex roots (even with real initial guesses) Convergence rate =1.84 Explicit formula rather lengthy (can be derived with more knowledge on interpolation – see Chapter 6)
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.