Presentation is loading. Please wait.

Presentation is loading. Please wait.

MATH 577http://amadeus.math.iit.edu/~fass1 3.2 The Secant Method Recall Newton’s method Main drawbacks: requires coding of the derivative requires evaluation.

Similar presentations


Presentation on theme: "MATH 577http://amadeus.math.iit.edu/~fass1 3.2 The Secant Method Recall Newton’s method Main drawbacks: requires coding of the derivative requires evaluation."— Presentation transcript:

1 MATH 577http://amadeus.math.iit.edu/~fass1 3.2 The Secant Method Recall Newton’s method Main drawbacks: requires coding of the derivative requires evaluation of and in every iteration Work-around Approximate derivative with difference quotient:

2 MATH 577http://amadeus.math.iit.edu/~fass2 Secant Method

3 MATH 577http://amadeus.math.iit.edu/~fass3 Graphical Interpretation

4 MATH 577http://amadeus.math.iit.edu/~fass4 Graphical Interpretation

5 MATH 577http://amadeus.math.iit.edu/~fass5 Convergence Analysis

6 MATH 577http://amadeus.math.iit.edu/~fass6 Proof of Theorem 3.2

7 MATH 577http://amadeus.math.iit.edu/~fass7 Proof of Theorem 3.2 (cont.)

8 MATH 577http://amadeus.math.iit.edu/~fass8 Proof of Theorem 3.2 (cont.)

9 MATH 577http://amadeus.math.iit.edu/~fass9 Proof of Theorem 3.2 (cont.)

10 MATH 577http://amadeus.math.iit.edu/~fass10 Proof of Theorem 3.2 (cont.) earlier formula

11 MATH 577http://amadeus.math.iit.edu/~fass11 Proof of Theorem 3.2 (Exact order)

12 MATH 577http://amadeus.math.iit.edu/~fass12 Proof of Theorem 3.2 (Exact order) (*)(*):

13 MATH 577http://amadeus.math.iit.edu/~fass13 Proof of Theorem 3.2 (Exact order)

14 MATH 577http://amadeus.math.iit.edu/~fass14 Proof of Theorem 3.2 (Exact order) (cf. Theorem)Theorem

15 MATH 577http://amadeus.math.iit.edu/~fass15 Comparison of Root Finding Methods Other facts: bisection method always converges Newton’s method requires coding of derivative

16 MATH 577http://amadeus.math.iit.edu/~fass16 Newton vs. Secant (“Fair” Comparison)

17 MATH 577http://amadeus.math.iit.edu/~fass17 Generalizations of the Secant Method

18 MATH 577http://amadeus.math.iit.edu/~fass18 Müller’s Method

19 MATH 577http://amadeus.math.iit.edu/~fass19 Müller’s Method (cont.) Features: Can locate complex roots (even with real initial guesses) Convergence rate  =1.84 Explicit formula rather lengthy (can be derived with more knowledge on interpolation – see Chapter 6)


Download ppt "MATH 577http://amadeus.math.iit.edu/~fass1 3.2 The Secant Method Recall Newton’s method Main drawbacks: requires coding of the derivative requires evaluation."

Similar presentations


Ads by Google