Download presentation
Presentation is loading. Please wait.
1
Linear programming maximize x 1 + x 2 x 1 + 3x 2 3 3x 1 + x 2 5 x 1 0 x 2 0
2
Linear programming maximize x 1 + x 2 x 1 + 3x 2 3 3x 1 + x 2 5 x 1 0 x 2 0 x1x1 x2x2
3
Linear programming maximize x 1 + x 2 x 1 + 3x 2 3 3x 1 + x 2 5 x 1 0 x 2 0 x1x1 x2x2
4
Linear programming maximize x 1 + x 2 x 1 + 3x 2 3 3x 1 + x 2 5 x 1 0 x 2 0 x1x1 x2x2 feasible solutions
5
Linear programming maximize x 1 + x 2 x 1 + 3x 2 3 3x 1 + x 2 5 x 1 0 x 2 0 x1x1 x2x2 optimal solution x 1 =1/2, x 2 =3/2
6
Can you prove it is optimal ? maximize x 1 + x 2 x 1 + 3x 2 3 3x 1 + x 2 5 x 1 0 x 2 0 x1x1 x2x2 optimal solution x 1 =1/2, x 2 =3/2
7
Can you prove it is optimal ? maximize x 1 + x 2 x 1 + 3x 2 3 3x 1 + x 2 5 4x 1 + 4x 2 8 x1x1 x2x2 optimal solution x 1 =1/2, x 2 =3/2
8
Can you prove it is optimal ? maximize x 1 + x 2 x 1 + 3x 2 3 3x 1 + x 2 5 x 1 +x 2 2 x1x1 x2x2 optimal solution x 1 =1/2, x 2 =3/2
9
Another linear program maximize x 1 + x 2 x 1 + 2x 2 3 4x 1 + x 2 5 x 1 0 x 2 0
10
Another linear program maximize x 1 + x 2 x 1 + 2x 2 3 4x 1 + x 2 5 x 1 0 x 2 0 x 1 =1, x 2 =1, optimal ?
11
Another linear program maximize x 1 + x 2 x 1 + 2x 2 3 *3 4x 1 + x 2 5 *1 x 1 0 x 2 0 x 1 =1, x 2 =1, optimal ! 7x 1 + 7x 2 14
12
Systematic search for the proof of optimality maximize x 1 + x 2 x 1 + 2x 2 3 * y 1 4x 1 + x 2 5 * y 2 x 1 0 x 2 0
13
Systematic search for the proof of optimality maximize x 1 + x 2 x 1 + 2x 2 3 * y 1 4x 1 + x 2 5 * y 2 x 1 0 x 2 0 y 1 0 y 2 0
14
Systematic search for the proof of optimality maximize x 1 + x 2 x 1 + 2x 2 3 * y 1 4x 1 + x 2 5 * y 2 x 1 0 x 2 0 y 1 0 y 2 0 min 3y 1 +5y 2 y 1 + 4y 2 1 2y 1 +y 2 1
15
Systematic search for the proof of optimality max x 1 +x 2 x 1 + 2x 2 3 4x 1 + x 2 5 x 1 0 x 2 0 y 1 0 y 2 0 min 3y 1 +5y 2 y 1 + 4y 2 1 2y 1 +y 2 1 dual linear programs
16
Systematic search for the proof of optimality max x 1 +x 2 x 1 + 2x 2 3 4x 1 + x 2 5 x 1 0 x 2 0 y 1 0 y 2 0 min 3y 1 +5y 2 y 1 + 4y 2 1 2y 1 +y 2 1 dual linear programs
17
Linear programming duality max x 1 +x 2 x 1 + 2x 2 3 4x 1 + x 2 5 x 1 0 x 2 0 y 1 0 y 2 0 min 3y 1 +5y 2 y 1 + 4y 2 1 2y 1 +y 2 1
18
Linear programs variables: x 1,x 2,...,x n linear function: a 1 x 1 + a 2 x 2 +... + a n x n linear constraint: equality a 1 x 1 + a 2 x 2 +... + a n x n = b inequality a 1 x 1 + a 2 x 2 +... + a n x n b
19
Linear programs variables: x 1,x 2,...,x n linear function: a 1 x 1 + a 2 x 2 +... + a n x n linear constraint: equality a 1 x 1 + a 2 x 2 +... + a n x n = b inequality a 1 x 1 + a 2 x 2 +... + a n x n b max/min of a linear function subject to collection of linear constraints
20
Linear programs variables: x 1,x 2,...,x n linear function: a 1 x 1 + a 2 x 2 +... + a n x n linear constraint: equality a 1 x 1 + a 2 x 2 +... + a n x n = b inequality a 1 x 1 + a 2 x 2 +... + a n x n b max/min of a linear function subject to collection of linear constraints Goal: find the optimal solution (i.e., a feasible solution with the maximum value of the objective)
21
Linear programs one of the most important modeling tools oil industry manufacturing marketing circuit design very important in theory as well
22
Shortest path s t 5 6 1 3 2 4 u v w
23
s t 5 6 1 3 2 4 u v w d s = 0 d u d s + 5 d v d s + 6 d w d u + 3 d w d v + 1 d t d w + 2 d t d v + 4 max d t
24
Max-Flow FLOW CONSERVATION CAPACITY CONSTRAINTS f u,v = 0 vVvV f u,v c(u,v) SKEW SYMMETRY f u,v = - f v,u
25
Max-Flow f u,v = 0 vVvV f u,v c(u,v) f u,v + f v,u =0 objective = ? u s,t:
26
Max-Flow f u,v = 0 vVvV f u,v c(u,v) f u,v + f v,u =0 max f s,v vVvV u s,t:
27
Linear programming duality maximize minimize constraint variable equality unrestricted non-negative variable constraint unrestricted equality non-negative
28
Linear programming duality maximize minimize constraint variable equality unrestricted non-negative variable constraint unrestricted equality non-negative max x 1 +x 2 x 1 +x 2 +x 3 +x 4 =1 x 1 +2x 3 1 x 2 +2x 4 2 x 1 0 x 4 0
29
Linear programming duality maximize minimize constraint variable equality unrestricted non-negative variable constraint unrestricted equality non-negative max x 1 +x 2 x 1 +x 2 +x 3 +x 4 =1 x 1 +2x 3 1 x 2 +2x 4 2 x 1 0 x 4 0 y 1 y 2 0 y 3 0 DONE
30
Linear programming duality maximize minimize constraint variable equality unrestricted non-negative variable constraint unrestricted equality non-negative max x 1 +x 2 x 1 +x 2 +x 3 +x 4 =1 x 1 +2x 3 1 x 2 +2x 4 2 x 1 0 x 4 0 y 1 y 2 0 y 3 0 min y 1 + y 2 + 2 y 3 DONE
31
Linear programming duality maximize minimize constraint variable equality unrestricted non-negative variable constraint unrestricted equality non-negative max x 1 +x 2 x 1 +x 2 +x 3 +x 4 =1 x 1 +2x 3 1 x 2 +2x 4 2 x 1 0 x 4 0 y 1 y 2 0 y 3 0 min y 1 + y 2 + 2 y 3 DONE y 1 + y 2 1 y 1 + y 3 = 1 y 1 + 2y 2 = 0 y 1 + 2y 3 0 DONE
32
Linear programming duality max x 1 +x 2 x 1 +x 2 +x 3 +x 4 =1 x 1 +2x 3 1 x 2 +2x 4 2 x 1 0 x 4 0 y 2 0 y 3 0 min y 1 + y 2 + 2 y 3 y 1 + y 2 1 y 1 + y 3 = 1 y 1 + 2y 2 = 0 y 1 + 2y 3 0
33
a 1 x 1 +... + a n x n b a 1 x 1 +... + a n x n b + y, y 0 a 1 x 1 +... + a n x n – y b, y 0 “ ” “=” and non-negativity
34
a 1 x 1 +... + a n x n b a 1 x 1 +... + a n x n b a 1 x 1 +... + a n x n b “ ” “ ” a 1 x 1 +... + a n x n b -a 1 x 1 -... - a n x n -b
35
optimization feasibility max a 1 x 1 +...+a n x n a 1 x 1 +...+a n x n P + binary search on P
36
Max-Flow f u,v = 0 vVvV f u,v c(u,v) f u,v + f v,u =0 max f s,v vVvV u s,t:
37
Max-Flow f u,v = 0 vVvV f u,v c(u,v) f u,v + f v,u =0 max f s,v vVvV yuyu z u,v 0 w {u,v} u s,t:
38
Max-Flow f u,v = 0 vVvV f u,v c(u,v) f u,v + f v,u =0 max f s,v vVvV yuyu z u,v w {u,v} min c(u,v)z u,v u,v u s,t: z u,v 0
39
Max-Flow f u,v = 0 vVvV f u,v c(u,v) f u,v + f v,u =0 max f s,v vVvV yuyu z u,v w {u,v} min c(u,v)z u,v u,v + + =0 u s,t u s,t: z u,v 0
40
Max-Flow min c(u,v)z u,v u,v u s,t y u + z u,v + w { u,v } =0 z s,v + w { s,v } =1 z t,v + w { t,v } =0 z u,v 0 y s = -1 y t = 0
41
Max-Flow min c(u,v)z u,v u,v y u + z u,v + w { u,v } =0 z u,v 0 y s = -1 y t = 0
42
Max-Flow min c(u,v)z u,v u,v y u + z u,v + w { u,v } =0 z u,v 0 y s = -1 y t = 0 y v + z v,u + w { u,v } =0
43
Max-Flow min c(u,v)z u,v u,v y u + z u,v + w { u,v } =0 z u,v 0 y s = -1 y t = 0 y v + z v,u + w { u,v } =0 y u - y v = z v,u - z u,v
44
Max-Flow min c(u,v)z u,v u,v z u,v 0 y s = -1 y t = 0 y u - y v = z v,u - z u,v
45
Max-Flow min c(u,v) max{0,y u -y v } u,v z u,v 0 y s = -1 y t = 0 y u - y v = z v,u - z u,v
46
Max-Flow min c(u,v) max{0,y u -y v } u,v y s = -1 y t = 0
47
Max-Flow = Min-Cut min c(u,v) max{0,y u -y v } u,v y s = -1 y t = 0 min c(u,v) u S,v S C S,s S t S C one more trick achieves y u {-1,0}
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.