Download presentation
Presentation is loading. Please wait.
1
Complexity 1 The Padding Argument
2
Complexity 2 Motivation: Scaling-Up Complexity Claims space + non-determinism We have: space + determinism can be simulated by… We want: space + non-determinism space + determinism can be simulated by…
3
Complexity 3 Formally NSPACE(s 1 (n)) SPACE(s 2 (n)) NSPACE(s 1 (f(n))) SPACE(s 2 (f(n))) Claim: For any two space constructible functions s 1 (n),s 2 (n) logn, f(n) n: s i (n) can be computed with space s i (n) simulation overhead E.g NSPACE(n) SPACE(n 2 ) NSPACE(n 2 ) SPACE(n 4 )
4
Complexity 4 Idea NTM...... n space: O(s 1 (f(n))).................... f(n) space: s 1 (.) in the size of its input DTM space: O(s 2 (f(n))) 0 0...... n
5
Complexity 5 Padding argument Let L NPSPACE(s 1 (f(n))) There is a 3-Tape-NTM M L : babba Input Work |x| O(s 1 (f(|x|)))
6
Complexity 6 Padding argument Let L’ = { x0 f(|x|)-|x| | x L } We’ll show a NTM M L’ which decides L’ in the same number of cells as M L. babba00000000000000000000000000000000 Input Work f(|x|) O(s 1 (f(|x|))
7
Complexity 7 Padding argument – M L’ 1.Count backwards the number of 0’s and check there are f(|x|)-|x| such. 2.Run M L on x. babba00000000000000000000000000000000 Input Work f(|x|) O(s 1 (f(|x|))) In O(log(f(|x|)) space in O(s 1 (f(|x|))) space
8
Complexity 8 Padding argument babba00000000000000000000000000000000 Input Work f(|x|) O(s 1 (f(|x|))) Total space: O(s 1 (f(|x|)))
9
Complexity 9 Padding Argument We started with L NSPACE(s 1 (f(n))) We showed: L’ NSPACE(s 1 (n)) Thus, L’ SPACE(s 2 (n)) Using the DTM for L’ we’ll construct a DTM for L, which will work in O(s 2 (f(n))) space.
10
Complexity 10 Padding Argument The DTM for L’ will simulate the DTM for L when working on its input concatenated with zeros babba 00000000000000000000000 Input
11
Complexity 11 Padding Argument When the input head leaves the input part, just pretend it encounters 0s. keeping track after the simulated position takes O(log(f(|x|))) space. Thus our machine uses O(s 2 (f(|x|))) space. NSPACE(s 1 (f(n))) SPACE(s 2 (f(n)))
12
Complexity 12 Savitch: Generalized Version Theorem (Savitch): S(n) ≥ log(n) NSPACE(S(n)) SPACE(S(n) 2 ) Proof: We proved NL SPACE(log 2 n). The theorem follows from the padding argument.
13
Complexity 13 Corollary Corollary: PSPACE = NPSPACE Proof: Clearly, PSPACE NPSPACE. By Savitch’s theorem, NPSPACE PSPACE.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.