Presentation is loading. Please wait.

Presentation is loading. Please wait.

SOME SCALING PROPERTIES OF FRACTURE SURFACES 99th Statistical Mechanics Conference, May 2008 D. Bonamy, L. Ponson, E. Bouchaud GROUPE FRACTURE CEA-Saclay,

Similar presentations


Presentation on theme: "SOME SCALING PROPERTIES OF FRACTURE SURFACES 99th Statistical Mechanics Conference, May 2008 D. Bonamy, L. Ponson, E. Bouchaud GROUPE FRACTURE CEA-Saclay,"— Presentation transcript:

1 SOME SCALING PROPERTIES OF FRACTURE SURFACES 99th Statistical Mechanics Conference, May 2008 D. Bonamy, L. Ponson, E. Bouchaud GROUPE FRACTURE CEA-Saclay, France

2 Scale of the material heterogeneities Include the basic mechanisms into a statistical description Macroscopic scale Mechanics of materials 99th Statistical Mechanics Conference, May 2008

3 No easy averaging at a crack tip:  Strong stress gradient  The most brittle link breaks first  Rare events statistics No «equivalent effective homogeneous» material  (r) r c 00 00

4   Fractography Fracture surface = trace of the propagating crack front 99th Statistical Mechanics Conference, May 2008

5 1- Scaling properties of fracture surfaces 2- Crack line propagating through a random microstructure 3- Conclusion OUTLINE 99th Statistical Mechanics Conference, May 2008

6 Aluminum alloy  =0.77 3nm  0.1mm 1- Scaling properties…  = 0.77 z  h max (z) Profiles perpendicular to the direction of crack propagation 99th Statistical Mechanics Conference, May 2008

7  = 0.78 Ti 3 Al-based alloy  = 0.78 5 nm  0.5mm 1- Scaling properties… 99th Statistical Mechanics Conference, May 2008

8 Béton (Profilométrie) Glass (AFM) Alliage métallique (SEM+Stéréoscopie) Quasi-cristaux (STM) 130mm 1- Scaling properties… Δh 2D (Δz, Δx) = ( A ) 1/2  h (nm)  z (nm) AB ΔxΔx ΔzΔz L. Ponson, D. Bonamy, E.B. PRL 2006 L. Ponson et al, IJF 2006  h/  x   z/  x 1/ z  = 0.75  = 0.6 Z =  /  ~ 1.2 z

9 Béton (Profilométrie) Glass (AFM) Alliage métallique (SEM+Stéréoscopie) Quasi-crystals (STM) Δh 2D (Δz, Δx) = ( A ) 1/2 AB ΔxΔx ΔzΔz 130mm Quasi-crystals Courtesy P. Ebert 1- Scaling properties… Coll. D.B., L.P., L. Barbier, P. Ebert z z  = 0.75  = 0.6 z =  /  ~ 1.2 h (Å)

10 Béton (Profilométrie) Glass (AFM) Aluminum alloy (SEM+Stereo) Quasi-crystals (STM) Δh 2D (Δz, Δx) = ( A ) 1/2 AB ΔxΔx ΔzΔz 130mm  = 0.75  = 0.6 z =  /  ~ 1.2  h/  x   z/  x 1/ z 1- Scaling properties… h (Å) Coll. D.B., L.P., L. Barbier, P. Ebert

11 Mortar (Profilometry) Glass (AFM) Aluminum alloy (SEM+Stereo) Quasi-crystals (STM) Δh 2D (Δz, Δx) = ( A ) 1/2 AB ΔxΔx ΔzΔz 130mm  = 0.75  = 0.6 z =  /  ~ 1.2  h/  x   z/  x 1/ z Mortar 1- Scaling properties… (Coll. S. Morel & G. Mourot) h (Å) Coll. D.B., L.P., L. Barbier, P. Ebert

12 Mortar (Profilometry) Glass (AFM) Metallic alloy (SEM+Stereo) Quasi-crystals (STM) AB ΔxΔx ΔzΔz 130mm 1- Scaling properties…  z/  x 1/z ( l z / l x ) 1/  (  z/ l z )/(  x/ l x ) 1/ z  h/  x  (  h/ l x )/(  x/ l x )  Universal structure function Very different length scales h (Å) Coll. D.B.,L.P.,L. Barbier,P. Ebert

13 General result : anisotropic self-affine surface  independent of disorder Crack front= «elastic line» Fracture surface = trace left behind by the front J.-P. Bouchaud, EB, G. Lapasset, J. Planès (93) 2- Crack line…

14 D. Bonamy et al, PRL 2006  Linear elastic material  Weak distorsions z x f(x,z) KI0KI0 KI0KI0 h(x,z) 2- Crack line…  Family-Viscek structure function  Universal exponents  With values ζ=0.4, β=0.5 or logarithmic roughness Observed on sintered glass beads

15 What did we MISS ? Damage ! Amorphous silica Ti 3 Al-based alloy Roughness measurements performed within the damaged zone !   damaged zone size 99th Statistical Mechanics Conference, May 2008 2- Crack line…

16 2 classes of universality 1 Linear elastic region 2 Intermediate region: damage « perturbates » front (screening)  =0.75  =0.6 1 2 4- Conclusion Observation of both regimes on metallic alloys, mortar and silicate glasses 99th Statistical Mechanics Conference, May 2008

17 Disorder  line roughness Elastic restoring forces  rigidity of the line Undamaged material Transmission of stresses through long range undamaged material :long range interactions (1/r 2 )  very rigid line 3- Damage… Transmission of stresses through a « Swiss cheese »: Screening of elastic interactions  lower rigidity  Long range  Short range 99th Statistical Mechanics Conference, May 2008


Download ppt "SOME SCALING PROPERTIES OF FRACTURE SURFACES 99th Statistical Mechanics Conference, May 2008 D. Bonamy, L. Ponson, E. Bouchaud GROUPE FRACTURE CEA-Saclay,"

Similar presentations


Ads by Google