Presentation is loading. Please wait.

Presentation is loading. Please wait.

Two-way Analysis of Three-way Data. Two-way Analysis of Two-way Data = X D Y D = X Y 23.

Similar presentations


Presentation on theme: "Two-way Analysis of Three-way Data. Two-way Analysis of Two-way Data = X D Y D = X Y 23."— Presentation transcript:

1 Two-way Analysis of Three-way Data

2 Two-way Analysis of Two-way Data = X D Y D = X Y 23

3 Two-way Analysis of Two-way Data = D Y D = X Q Y z X 22

4 Three-way Data D3D3 D1D1 D2D2 D 21

5 = X2X2 D2D2 Y2Y2 D 2 = X 2 Q 2 Y 2 z2z2 = X1X1 D1D1 Y1Y1 D 1 = X 1 Q 1 Y 1 z1z1 = X3X3 D2D2 Y3Y3 D 3 = X 3 Q 3 Y 3 z3z3 Structure of three way data 20

6 Trilinearity D3D3 D1D1 D2D2 D3D3 D1D1 D2D2 Rank = r 1 Rank = r 2 19

7 = X2X2 D2D2 Y2Y2 D 2 = X 2 Q 2 Y 2 z2z2 = X1X1 D1D1 Y1Y1 D 1 = X 1 Q 1 Y 1 z1z1 = X3X3 D2D2 Y3Y3 D 3 = X 3 Q 3 Y 3 z3z3 Similar X matrices 18

8 D3D3 D1D1 D2D2 = X1X1 Y1Y1 z1z1 Y2Y2 z2z2 Y3Y3 z3z3 = X1X1 Q1Y1Q1Y1 Q2Y2Q2Y2 Q3Y3Q3Y3 Row wise augmented MCR 17

9 Similar Y matrices = X2X2 D2D2 Y2Y2 D 2 = X 2 Q 2 Y 2 z2z2 = X1X1 D1D1 Y1Y1 D 1 = X 1 Q 1 Y 1 z1z1 = X3X3 D2D2 Y3Y3 D 3 = X 3 Q 3 Y 3 z3z3 16

10 Column wise augmented MCR D3D3 D1D1 D2D2 = X2X2 z2z2 X1X1 z1z1 X3X3 z3z3 Y1Y1 = Q2X2Q2X2 Q1X1Q1X1 Q3X3Q3X3 Y1Y1 15

11 Similar X and Y matrices = X2X2 D2D2 Y2Y2 D 2 = X 2 Q 2 Y 2 z2z2 = X1X1 D1D1 Y1Y1 D 1 = X 1 Q 1 Y 1 z1z1 = X3X3 D2D2 Y3Y3 D 3 = X 3 Q 3 Y 3 z3z3 14

12 D3D3 D1D1 D2D2 = X1X1 Q1Y1Q1Y1 Q2Y2Q2Y2 Q3Y3Q3Y3 Row wise or column wise augmented MCR D3D3 D1D1 D2D2 = Q2X2Q2X2 Q1X1Q1X1 Q3X3Q3X3 Y1Y1 13

13 Trilinearity constraint D3D3 D1D1 D2D2 = Q2X2Q2X2 Q1X1Q1X1 Q3X3Q3X3 Y1Y1 PCA 12

14 = X2X2 D2D2 Y2Y2 D 2 = X 2 Q 2 Y 2 z2z2 = X1X1 D1D1 Y1Y1 D 1 = X 1 Q 1 Y 1 z1z1 = X3X3 D2D2 Y3Y3 D 3 = X 3 Q 3 Y 3 z3z3 Different X and Y matrices 11

15 D3D3 D1D1 D2D2 Y1Y1 = Y2Y2 Y3Y3 Q2X2Q2X2 Q1X1Q1X1 Q3X3Q3X3 Column wise augmented MCR 10

16 D3D3 D1D1 D2D2 = Y1Y1 Y2Y2 Y3Y3 Row wise augmented MCR Q2X2Q2X2 Q1X1Q1X1 Q3X3Q3X3 9

17 PARAFAC model =D X Y Z D3D3 D1D1 D2D2 = X M1M2M3 8

18 PARAFAC model =D X Y Z D3D3 D1D1 D2D2 = N1 Y N2 N3 7

19 PARAFAC model =D X Y Z D3D3 D1D1 D2D2 = D4D4 P1P2P3P4 Z 6

20 D m n p Reconstruction of kth slice of a three-way array = XDkDk Y zkzk m n m c c c c n PARAFAC 5

21 D m n p Reconstruction of kth slice of a three-way array = XkXk DkDk Y zkzk m n m c c c c n PARAFAC2 X 1 X 1 T = X 2 X 2 T = … = X k X k T 4

22 D m n p Reconstruction of kth slice of a three-way array = X DkDk Y m n m r r c c n TUCKER3 MkMk 3

23 MCR-ALS is a quite adaptable method for different kinds of non-trilinear data sets. MCR-ALS with trilinearity constraint is equivalent to PARAFAC. MCR-ALS is conceptually simple, can constrain all modes and works satisfactorily in a large variety of situations. When a data set presents a PARAFAC2 structure, this method can provide unique solutions. MCR-ALS is the preferred option to deal with non-trilinear data sets. Conclusions: 2

24 Comparison of three-way resolution methods for non-trilinear chemical data sets Anna de Juan, Roma Tauler J. Chemometrics, 2001, 15, 749-772. Comparison of different multiway methods for the analysis of geographical metal distributions in fish, sediments and river water ib Catolonia Emma Pere-Trepat, Antonio Ginebreda, Roma Tauler. Chemom. Intel. Lab. Syst., 2007, 88, 69-83. On rotational ambiguity in parallel factor analysis H. Abdollahi, S.M. Sajjadi Chemom. Intel. Lab. Syst., 2010, 103, 144-151. Further studies: 1


Download ppt "Two-way Analysis of Three-way Data. Two-way Analysis of Two-way Data = X D Y D = X Y 23."

Similar presentations


Ads by Google