Download presentation
Presentation is loading. Please wait.
1
Fictitious Force
2
Inertial Lagrangian The Lagrangian is defined in an inertial system. Follows Newton’s lawsFollows Newton’s laws Equivalent in other inertial systemsEquivalent in other inertial systems Hamilton’s equations are similarly unaffected by a change to another inertial system.
3
Accelerating Coordinates Select Cartesian coordinates with acceleration. Transform along that coordinate The kinetic energy will be changed. x1’x1’ x2x2 x1x1 x2’x2’ a
4
No External Force Let the accelerated system have no external force. Zero potentialZero potential The Euler-Lagrange equations have a force-like term. Apparent potentialApparent potential This is a fictitious force. Only the accelerated frameOnly the accelerated frame
5
Rotating Coordinates A rotating coordinate system is non-inertial. Time-dependent angle Transform coordinates Transform velocities x2x2 x2’x2’ x1x1 x1’x1’ tt
6
Rotating Motion Rewrite the kinetic energy in terms of the rotating coordinates. Summation rule usedSummation rule used Find the three EL equations.
7
Wedge Products The extra terms can be expressed as a vector product. Define the angular velocity along 3-axis. Product terms only for 1- and 2-axesProduct terms only for 1- and 2-axes
8
Vector Form The vector products can be used to create a vector equation. In the rotating frame there are two fictitious forces unrelated to the potential. Centrifugal force Coriolis force next
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.