Download presentation
Presentation is loading. Please wait.
1
1 Dr. Scott Schaefer Tensor-Product Surfaces
2
2/64 Smooth Surfaces Lagrange Surfaces Interpolating sets of curves Bezier Surfaces B-spline Surfaces
3
3/64 Lagrange Surfaces
4
4/64 Lagrange Surfaces
5
5/64 Lagrange Surfaces
6
6/64 Lagrange Surfaces
7
7/64 Lagrange Surfaces
8
8/64 Lagrange Surfaces
9
9/64 Lagrange Surfaces
10
10/64 Lagrange Surfaces
11
11/64 Lagrange Surfaces
12
12/64 Lagrange Surfaces
13
13/64 Lagrange Surfaces
14
14/64 Lagrange Surfaces
15
15/64 Lagrange Surfaces
16
16/64 Lagrange Surfaces
17
17/64 Lagrange Surfaces – Properties Surface interpolates all control points The boundaries of the surface are Lagrange curves defined by the control points on the boundary
18
18/64 Interpolating Sets of Curves Given a set of parametric curves p 0 (t), p 1 (t), …, p n (t), build a surface that interpolates them
19
19/64 Interpolating Sets of Curves Given a set of parametric curves p 0 (t), p 1 (t), …, p n (t), build a surface that interpolates them Evaluate each curve at parameter value t, then use these points as the control points for a Lagrange curve of degree n Evaluate this new curve at parameter value s
20
20/64 Bezier Surfaces
21
21/64 Bezier Surfaces
22
22/64 Bezier Surfaces
23
23/64 Bezier Surfaces
24
24/64 Bezier Surfaces
25
25/64 Bezier Surfaces
26
26/64 Bezier Surfaces
27
27/64 Bezier Surfaces
28
28/64 Bezier Surfaces
29
29/64 Bezier Surfaces
30
30/64 Bezier Surfaces
31
31/64 Bezier Surfaces – Properties Surface lies in convex hull of control points Surface interpolates the four corner control points Boundary curves are Bezier curves defined only by control points on boundary
32
32/64 General Tensor Product Surfaces
33
33/64 General Tensor Product Surfaces
34
34/64 Properties Curve properties/algorithms apply to surfaces too Convex hull
35
35/64 Properties Curve properties/algorithms apply to surfaces too Convex hull Degree elevation
36
36/64 Properties Curve properties/algorithms apply to surfaces too Convex hull Degree elevation Evaluation algorithms
37
37/64 Properties Curve properties/algorithms apply to surfaces too Convex hull Degree elevation Evaluation algorithms …. Analog of variation diminishing does not apply!!!
38
38/64 Matrix Form of Quadrilateral Bezier Patches
39
39/64 Matrix Form of Quadrilateral Bezier Patches
40
40/64 deCasteljau Algorithm for Bezier Surfaces
41
41/64 deCasteljau Algorithm for Bezier Surfaces
42
42/64 deCasteljau Algorithm for Bezier Surfaces
43
43/64 deCasteljau Algorithm for Bezier Surfaces
44
44/64 deCasteljau Algorithm for Bezier Surfaces
45
45/64 deCasteljau Algorithm for Bezier Surfaces
46
46/64 deCasteljau Algorithm for Bezier Surfaces
47
47/64 deCasteljau Algorithm for Bezier Surfaces
48
48/64 deCasteljau Algorithm for Bezier Surfaces
49
49/64 Derivatives of Bezier Surfaces Exact evaluate in the s-direction and use those control points to compute derivative in t-direction Exact evaluate in the t-direction and use those control points to compute derivative in s-direction Use a pyramid algorithm to compute derivatives
50
50/64 Derivatives using deCasteljau’s algorithm
51
51/64 Derivatives using deCasteljau’s algorithm
52
52/64 Derivatives using deCasteljau’s algorithm
53
53/64 Blossoming for Tensor-Product Patches Symmetry: b(s 1,s 2,…,s m |t 1,t 2,…,t n ) = b(s q(1),s q(2),…,s q(m) |t r(1),t r(2),…,t r(n) ) for any permutation q of (1,…,m) and r of (1,...,n) Multi-affine: b(s 1,…,(1-d)s k +d v k,,…s m |t 1,…,(1-e)t j +e w j,,…t n ) = (1-d)(1-e) b(s 1,…,s k,,…s m |t 1,…,t j,,…t n ) + (1-d)e b(s 1,…,s k,,…s m |t 1,…,w j,,…t n ) + de b(s 1,…,v k,,…s m |t 1,…,w j,,…t n ) + d(1-e) b(s 1,…,v k,,…s m |t 1,…,t j,,…t n ) Diagonal: b(s,s,…,s|t,t,…,t) = p(s,t)
54
54/64 Curves on Bezier Surfaces Assume we have points p(s 1,t 1 ), p(s 2,t 2 ) on a Bezier surface p(s,t). Construct a curve on the Bezier surface between these two points.
55
55/64 Curves on Bezier Surfaces Assume we have points p(s 1,t 1 ), p(s 2,t 2 ) on a Bezier surface p(s,t). Construct a curve on the Bezier surface between these two points.
56
56/64 Curves on Bezier Surfaces Assume we have points p(s 1,t 1 ), p(s 2,t 2 ) on a Bezier surface p(s,t). Construct a curve on the Bezier surface between these two points.
57
57/64 Curves on Bezier Surfaces Assume we have points p(s 1,t 1 ), p(s 2,t 2 ) on a Bezier surface p(s,t). Construct a curve on the Bezier surface between these two points.
58
58/64 Curves on Bezier Surfaces Assume we have points p(s 1,t 1 ), p(s 2,t 2 ) on a Bezier surface p(s,t). Construct a curve on the Bezier surface between these two points.
59
59/64 Curves on Bezier Surfaces Assume we have points p(s 1,t 1 ), p(s 2,t 2 ) on a Bezier surface p(s,t). Construct a curve on the Bezier surface between these two points.
60
60/64 Curves on Bezier Surfaces Assume we have points p(s 1,t 1 ), p(s 2,t 2 ) on a Bezier surface p(s,t). Construct a curve on the Bezier surface between these two points. k th control point for Bezier curve of degree n+m!!!
61
61/64 Triangular Patches How do we build triangular patches instead of quads?
62
62/64 Triangular Patches How do we build triangular patches instead of quads?
63
63/64 Triangular Patches How do we build triangular patches instead of quads?
64
64/64 Triangular Patches How do we build triangular patches instead of quads? Continuity difficult to maintain between patches Parameterization very distorted Not symmetric
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.