Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Dr. Scott Schaefer Tensor-Product Surfaces. 2/64 Smooth Surfaces Lagrange Surfaces  Interpolating sets of curves Bezier Surfaces B-spline Surfaces.

Similar presentations


Presentation on theme: "1 Dr. Scott Schaefer Tensor-Product Surfaces. 2/64 Smooth Surfaces Lagrange Surfaces  Interpolating sets of curves Bezier Surfaces B-spline Surfaces."— Presentation transcript:

1 1 Dr. Scott Schaefer Tensor-Product Surfaces

2 2/64 Smooth Surfaces Lagrange Surfaces  Interpolating sets of curves Bezier Surfaces B-spline Surfaces

3 3/64 Lagrange Surfaces

4 4/64 Lagrange Surfaces

5 5/64 Lagrange Surfaces

6 6/64 Lagrange Surfaces

7 7/64 Lagrange Surfaces

8 8/64 Lagrange Surfaces

9 9/64 Lagrange Surfaces

10 10/64 Lagrange Surfaces

11 11/64 Lagrange Surfaces

12 12/64 Lagrange Surfaces

13 13/64 Lagrange Surfaces

14 14/64 Lagrange Surfaces

15 15/64 Lagrange Surfaces

16 16/64 Lagrange Surfaces

17 17/64 Lagrange Surfaces – Properties Surface interpolates all control points The boundaries of the surface are Lagrange curves defined by the control points on the boundary

18 18/64 Interpolating Sets of Curves Given a set of parametric curves p 0 (t), p 1 (t), …, p n (t), build a surface that interpolates them

19 19/64 Interpolating Sets of Curves Given a set of parametric curves p 0 (t), p 1 (t), …, p n (t), build a surface that interpolates them Evaluate each curve at parameter value t, then use these points as the control points for a Lagrange curve of degree n Evaluate this new curve at parameter value s

20 20/64 Bezier Surfaces

21 21/64 Bezier Surfaces

22 22/64 Bezier Surfaces

23 23/64 Bezier Surfaces

24 24/64 Bezier Surfaces

25 25/64 Bezier Surfaces

26 26/64 Bezier Surfaces

27 27/64 Bezier Surfaces

28 28/64 Bezier Surfaces

29 29/64 Bezier Surfaces

30 30/64 Bezier Surfaces

31 31/64 Bezier Surfaces – Properties Surface lies in convex hull of control points Surface interpolates the four corner control points Boundary curves are Bezier curves defined only by control points on boundary

32 32/64 General Tensor Product Surfaces

33 33/64 General Tensor Product Surfaces

34 34/64 Properties Curve properties/algorithms apply to surfaces too  Convex hull

35 35/64 Properties Curve properties/algorithms apply to surfaces too  Convex hull  Degree elevation

36 36/64 Properties Curve properties/algorithms apply to surfaces too  Convex hull  Degree elevation  Evaluation algorithms

37 37/64 Properties Curve properties/algorithms apply to surfaces too  Convex hull  Degree elevation  Evaluation algorithms  ….  Analog of variation diminishing does not apply!!!

38 38/64 Matrix Form of Quadrilateral Bezier Patches

39 39/64 Matrix Form of Quadrilateral Bezier Patches

40 40/64 deCasteljau Algorithm for Bezier Surfaces

41 41/64 deCasteljau Algorithm for Bezier Surfaces

42 42/64 deCasteljau Algorithm for Bezier Surfaces

43 43/64 deCasteljau Algorithm for Bezier Surfaces

44 44/64 deCasteljau Algorithm for Bezier Surfaces

45 45/64 deCasteljau Algorithm for Bezier Surfaces

46 46/64 deCasteljau Algorithm for Bezier Surfaces

47 47/64 deCasteljau Algorithm for Bezier Surfaces

48 48/64 deCasteljau Algorithm for Bezier Surfaces

49 49/64 Derivatives of Bezier Surfaces Exact evaluate in the s-direction and use those control points to compute derivative in t-direction Exact evaluate in the t-direction and use those control points to compute derivative in s-direction Use a pyramid algorithm to compute derivatives

50 50/64 Derivatives using deCasteljau’s algorithm

51 51/64 Derivatives using deCasteljau’s algorithm

52 52/64 Derivatives using deCasteljau’s algorithm

53 53/64 Blossoming for Tensor-Product Patches Symmetry: b(s 1,s 2,…,s m |t 1,t 2,…,t n ) = b(s q(1),s q(2),…,s q(m) |t r(1),t r(2),…,t r(n) ) for any permutation q of (1,…,m) and r of (1,...,n) Multi-affine: b(s 1,…,(1-d)s k +d v k,,…s m |t 1,…,(1-e)t j +e w j,,…t n ) = (1-d)(1-e) b(s 1,…,s k,,…s m |t 1,…,t j,,…t n ) + (1-d)e b(s 1,…,s k,,…s m |t 1,…,w j,,…t n ) + de b(s 1,…,v k,,…s m |t 1,…,w j,,…t n ) + d(1-e) b(s 1,…,v k,,…s m |t 1,…,t j,,…t n ) Diagonal: b(s,s,…,s|t,t,…,t) = p(s,t)

54 54/64 Curves on Bezier Surfaces Assume we have points p(s 1,t 1 ), p(s 2,t 2 ) on a Bezier surface p(s,t). Construct a curve on the Bezier surface between these two points.

55 55/64 Curves on Bezier Surfaces Assume we have points p(s 1,t 1 ), p(s 2,t 2 ) on a Bezier surface p(s,t). Construct a curve on the Bezier surface between these two points.

56 56/64 Curves on Bezier Surfaces Assume we have points p(s 1,t 1 ), p(s 2,t 2 ) on a Bezier surface p(s,t). Construct a curve on the Bezier surface between these two points.

57 57/64 Curves on Bezier Surfaces Assume we have points p(s 1,t 1 ), p(s 2,t 2 ) on a Bezier surface p(s,t). Construct a curve on the Bezier surface between these two points.

58 58/64 Curves on Bezier Surfaces Assume we have points p(s 1,t 1 ), p(s 2,t 2 ) on a Bezier surface p(s,t). Construct a curve on the Bezier surface between these two points.

59 59/64 Curves on Bezier Surfaces Assume we have points p(s 1,t 1 ), p(s 2,t 2 ) on a Bezier surface p(s,t). Construct a curve on the Bezier surface between these two points.

60 60/64 Curves on Bezier Surfaces Assume we have points p(s 1,t 1 ), p(s 2,t 2 ) on a Bezier surface p(s,t). Construct a curve on the Bezier surface between these two points. k th control point for Bezier curve of degree n+m!!!

61 61/64 Triangular Patches How do we build triangular patches instead of quads?

62 62/64 Triangular Patches How do we build triangular patches instead of quads?

63 63/64 Triangular Patches How do we build triangular patches instead of quads?

64 64/64 Triangular Patches How do we build triangular patches instead of quads? Continuity difficult to maintain between patches Parameterization very distorted Not symmetric


Download ppt "1 Dr. Scott Schaefer Tensor-Product Surfaces. 2/64 Smooth Surfaces Lagrange Surfaces  Interpolating sets of curves Bezier Surfaces B-spline Surfaces."

Similar presentations


Ads by Google