Download presentation
Presentation is loading. Please wait.
1
3C 186 A Luminous Quasar in the Center of a Strong Cooling Core Cluster at z>1 Aneta Siemiginowska CfA Tom Aldcroft (CfA) Steve Allen (Stanford) Jill Bechtold (Arizona) Doug Burke (CfA) Tracy Clarke (NRL) Teddy Cheung (NRL) Giulia Migliori (CfA) Malgorzata Sobolewska (CfA) Diana Worrall (Bristol)
2
Clusters, Boston July 2011Aneta Siemiginowska Outline 3C 186 X-ray Cluster 3C 186 Radio-Loud Quasar Quasar - Cluster Interactions Papers: * 2010, ApJ, 722, 102 - “High-redshift X-ray Cooling-core Cluster Associated with the Luminous Radio-loud Quasar 3C 186”, Siemiginowska, Burke, Aldcroft, Worrall, Allen, Bechtold, Clarke, Cheung * 2005 ApJ, 632, 110, Siemiginowska et al.
3
Clusters, Boston July 2011Aneta Siemiginowska Chandra- blue, Gemini -yellow Cluster Image - CXC Release X-rays Optical http://chandra.harvard.edu/photo/2010/3c186/ October 26, 2010 3C 186 z=1.067 1arcsec = 8.2 kpc
4
Clusters, Boston July 2011Aneta Siemiginowska 3C 186: X-ray Cluster Chandra ACIS-S 200 ksec in 4 exposures Radial extent ~280 kpc Radius qso cluster 2D Models: circular = 0.48 ±0.17 R core = 3.06 ±0.25 = 25.0 ±2.5 kpc Elliptical Models => 28 kpc
5
Clusters, Boston July 2011Aneta Siemiginowska Extract spectra from annuli. Fit spectra of annuli with thermal model => use deproject in Sherpa X-ray Cluster: Physical Parameters temp density entropy
6
Clusters, Boston July 2011Aneta Siemiginowska NFW model parameters: concentration => c 1 =7.4 (+2.8/-2.3) scale => r s =120 (+70/-40) kpc velocity dispersion c =780 (+90/-60) km/s r 2500 = 283 (+18/-13) kpc Surface Brightness fitting results: = 0.48 0.17 R core = 28 2 kpc Central density = 0.08 cm -3 Cluster Mass M(r 2500 ) = 1.02 (+0.21/-0.14) * 10 14 M sun Gas mass fraction =0.129 (+0.015/-0.016) Cluster Luminosity L (0.5-2 keV) = 4.6 0.28 *10 44 erg/s 3C 186 X-ray Cluster Luminous and Massive Cluster at z~1 F gas typical for low z clusters - (no evolution?)
7
Clusters, Boston July 2011Aneta Siemiginowska Density Profile Cooling time: < 5e8 years Cooling rate: ~ 400 190 M sun / year Heat supply to the cluster? 3C186 Cooling Core Cluster 1.7±0.2*10 9 yr 7.5±2.6*10 8 yr Cooling Time Profile Cluster Core: small R core ~28 kpc n e ~0.08 cm -3
8
Clusters, Boston July 2011Aneta Siemiginowska 3C186 Cluster Core: R core ~30 kpc Cooling time: < 3e8 years Cooling rate: ~ 460 M sun /year Heat supply to the cluster? Cooling Time Profile Cooling Core Clusters Russell et al 2010 3C186
9
Clusters, Boston July 2011Aneta Siemiginowska 3C 186 RL Quasar in the Cluster Massive Black Hole: => 3.2e9 M sun CIV FWHM (Kuraszkiewicz et al 2002) => 5.5e9 M sun SDSS (Shen et al 2011) Strong UV Big Blue Bump L BBB = 5.7x10 46 erg/s Luminous in X-rays L X (2-10 keV) ~ 1.2x10 45 erg/s Accretion Rate: L/L Edd ~ 0.25 Requires 10 M sun /year This is a small fraction (< 3%) of the total cooling rate of the cluster. 3C186 SED compared to the SED typical For a radio-loud QSO in Elvis et al 1994 Chandra BBB CSS R-L SED
10
Clusters, Boston July 2011Aneta Siemiginowska 3C 186: Radio Source 2 arcsec Chandra 2 arcsec core VLA 1.5 GHz VLA 15 GHz Compact Radio Source CSS Projected Size: 2 arcsec ~16 kpc Radio peaks: 0.3 GHz L(radio) ~10 46 erg/s Young Radio Source! Age: ~5e5 yrs (Murgia et al 1999) RS size < 30 kpc
11
Clusters, Boston July 2011Aneta Siemiginowska 2 arcsec Quasar Impact Jet and Radio Source Power? Pressure in Radio Lobes => 10 -8 erg/cm 3 Pressure of thermal gas => 10 -10 erg/cm 3 Overpressured expansion - strong shock Instantenous jet power: pdV ~ 10 58 ergs (under-estimated) RS age 5x10 5 years => L jet = 1.7x10 45 erg/s Jet Power using S radio (151 MHz) = 6x10 -24 erg/s/cm 2 /Hz and based on Willot et al (1999) => L jet = 10 46 erg/s Modeling of the jet SED (see Giulia Migliori poster) => L jet > 10 47 erg/s Quasar Radiation Power => L rad = 6x10 46 erg/s RS Compact!
12
Clusters, Boston July 2011Aneta Siemiginowska Cluster Heating? M (Rcore=45 kpc) = 3x10 11 M sun E heat (core) ~ (1keV/1GeV) M core c 2 => 6x10 59 erg Core Cooling time => 7x10 8 years => Needs a supply of E~ 2.7x10 43 erg/s => Only a fraction of QSO energy to heat the cluster Quasar L bol ~10 47 erg/s Jet Power ~ 10 46 erg/s => enough to heat the gas in 5e5 year L jet (10 46-47 erg) ~ L radiation (10 47 ) erg Quasar role?
13
Clusters, Boston July 2011Aneta Siemiginowska Quasar Impact: Non-thermal particles Sobolewska et al
14
Clusters, Boston July 2011Aneta Siemiginowska Summary X-ray Luminous massive cluster at high redshift. Luminous Quasar located in a center of this massive X-ray cluster. Cluster exhibits a strong cooling flow L jet ~ L radiation Quasar mode could be important for this cluster heating
15
Clusters, Boston July 2011Aneta Siemiginowska Quasars in Clusters Powerful RL quasars in Rich Environments Ellingson & Yee ‘90; Ellingson, Green & Yee ‘90, Smith & Heckman’90 Search for X-ray clusters by ROSAT Worrall et al ‘94 Hall et al ‘95, ‘97, Crawford et al ‘99 Diffuse X-ray emission can also be associated with CMB from radio lobes, relic, jets Cellotti & Fabian 04, Crawford & Fabian ‘03, Croston et al ‘05, Worrall et al ‘04 Detecting X-ray emission from thermal cluster gas is Challenging and requires Chandra! Majority of nearby clusters host a low power FRI radio source. But there are examples of X-ray clusters associated with powerful radio sources at lower redshift (e.g. Cygnus A, 3C295 see also poster by Ania Szostek)
16
Clusters, Boston July 2011Aneta Siemiginowska Extract spectra from 7 annuli. Check for Quasar Contamination Fit spectra of the annuli with thermal model => use deproject in Sherpa Spectral Modeling
17
Clusters, Boston July 2011Aneta Siemiginowska Quasar Contamination? Simulate PSF - assumed quasar spectrum of =1.9 Fit the simulated PSF spectra for the same regions Include a non-deprojected component in the spectral model for each cluster region - simple in Sherpa Innermost annulus most affected fit indicates lower temperatures kT=2.54 (+1.02/-0.57)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.