Presentation is loading. Please wait.

Presentation is loading. Please wait.

Light-Matter Quantum Interface

Similar presentations


Presentation on theme: "Light-Matter Quantum Interface"— Presentation transcript:

1 Light-Matter Quantum Interface
Danish Quantum Optics Center University of Aarhus QuanTOp Niels Bohr Institute Copenhagen University Light-Matter Quantum Interface Eugene Polzik LECTURE 4 IHP Quantum Information Trimester

2 Quantum memory for light:
criteria Memory must be able to store independently prepared states of light The state of light must be mapped onto the memory with the fidelity higher than the fidelity of the best classical recording The memory must be readable B. Julsgaard, J. Sherson, J. Fiurášek , I. Cirac, and E. S. Polzik Nature, 432, 482 (2004); quant-ph/

3 Mapping a Quantum State of Light onto Atomic Ensemble
Spin Squeezed Atoms The beginning. Complete absorption 1 > 2 > Squeezed Light pulse Proposal: Kuzmich, Mølmer, EP PRL 79, 4782 (1997) 0 > Experiment: Hald, Sørensen, Schori, EP PRL 83, 1319 (1999) Atoms Very inefficient lives only nseconds, but a nice first try…

4 interaction entangles
Our light-atoms interface - the basics …and feedback applied Light pulse – consisting of two modes Strong driving Weak quantum Projection measurement on light can be made… Dipole off-resonant interaction entangles light and atoms or more atomic samples Passes through one…

5 vertical horizontal Polarization quantum variables – Light x y 45 -45
Polarization – Stokes parameters vertical Propagation direction Linear polarizations Circular polarizations horizontal

6 Canonical quantum variables for an atomic ensemble:
y z x Quantum state (Wigner function)

7 Decoherence from stray Special coating – 104 collisions
Object – gas of spin polarized atoms at room temperature Optical pumping with circular polarized light Decoherence from stray magnetic fields Magnetic Shields Special coating – 104 collisions without spin flips

8 t Pulse: Canonical quantum variables for light
Complementarity : amplitude and phase of light cannot be measured together t Pulse: Various states

9 Polarization homodyning - measure X (or P)
-450 450 l/4 Polarizing Beamsplitter 450/-450 Strong field A(t) x EOM Polarizing cube Quantum field a -> X,P S1

10 Teleportation in the X,P representation
Bell measurement

11 another idea for (remote) state transfer
Today: another idea for (remote) state transfer and its experimental implementation for quantum memory for light Projection measurement X See also work on quantum cloning: J. Fiurasek, N. Cerf, and E.S. Polzik, Phys.Rev.Lett. 93, (2004)

12 Implementation: light-to-matter state transfer
No prior entanglement necessary squeeze atoms first = C - C F≈80% F→100% B. Julsgaard, J. Sherson, J. Fiurášek , I. Cirac, and E. S. Polzik Nature, 432, 482 (2004); quant-ph/

13 These criteria should be met for memory in:
Quantum computing with linear operations Quantum buffer for light Quantum Key storage in quantum cryptography More efficient repeaters

14 Classical benchmark fidelity for transfer of coherent states
e.-m. vacuum Atoms Best classical fidelity 50% K. Hammerer, M.M. Wolf, E.S. Polzik, J.I. Cirac, Phys. Rev. Lett. 94, (2005),

15 Preparation of the input state of light
Strong field A(t) Quantum field - X,P x EOM Polarizing cube S1 Vacuum Input quantum field Coherent P Squeezed Polarization state X

16 Physics behind the Hamiltonian: 1. Polarization rotation of light
-450 450 Polarizing Beamsplitter 450/-450 x Polarizing cube Quantum field

17 Physics behind the Hamiltonian: 2. Dynamic Stark shift of atoms
Strong field A(t) Quantum field - a x EOM Polarizing cube y

18 atoms Entanglement XL Quantum memory – Step 1 - interaction
Light rotates atomic spin – Stark shift XL atoms Atomic spin rotates polarization of light – Faraday effect Output light PL Input light Entanglement

19 light out atoms c XL Quantum memory – Step 2 - measurement + feedback
Polarization measurement c light out PL Feedback to spin rotation atoms Compare to the best classical recording Fidelity – > 100% (82% without SS atoms)

20 Experimental realization of quantum memory for light

21 B B Memory in rotating spin states y z Atomic Quantum Noise
2,4 2,2 2,0 1,8 1,6 1,4 1,2 Atomic noise power [arb. units] 1,0 0,8 0,6 0,4 0,2 0,0 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 Atomic density [arb. units]

22 B B x Memory in rotating spin states - continued z y
Atomic Quantum Noise 2,4 2,2 2,0 1,8 1,6 1,4 1,2 Atomic noise power [arb. units] 1,0 0,8 0,6 0,4 0,2 0,0 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 Atomic density [arb. units]

23 Encoding the quantum states in frequency sidebands

24 Memory in atomic Zeeman coherences
Cesium Rotating frame spin 4 3 2

25 x B B z y

26 Readout Input pulse pulse Magnetic feedback Nature, Nov. 25 (2004)
quant-ph/

27 Light t Stored state versus Input state: mean amplitudes p X plane
read write t output input Y plane Magnetic feedback p / 2 - rotation Xin ~ SZin Pin ~ SYin Light

28 Atoms Light Stored state: variances Absolute quantum/classical border
3.0 Absolute quantum/classical border Perfect mapping Atoms <P2mem > <X2mem> <X2in> =1/2 <P2in >=1/2 Light

29 Fidelity of quantum storage
State overlap averaged over the set of input states 0.65 0.7 0.75 0.8 0.85 0.9 0.56 0.58 0.62 0.64 0.66 0.68 Coherent states with 0 < n <4 Experiment Best classical mapping F 0.82 0.84 0.86 0.88 0.9 0.54 0.56 0.58 0.62 0.64 Gain Experiment Best classical mapping Coherent states with 0 < n <8

30 Quantum memory lifetime

31 Decoherence Limitations
Typical estimate of linewidth: G[Hz] = *q[deg] + 1.0*P[mW] + 0.5*P[mW]*q[deg] 1-2Hz 3-6Hz 25-40Hz Dominating Working values: Important for entanglement: Atomic/shot ratio (T is time, typical 2ms) Decoherence (retaining the dominating term) up to around 0.5 Theoretical entanglement with no decoherence: Need k2 large and h low, impossible.

32 Realized by an extra QND
Deterministic quantum memory for a light Qubit Initial state of atoms Initial state of atoms coherent squeezed State overlap Input state 63% Fidelity 100% for a qubit input state 78% 90% Realized by an extra QND measurement pulse Qubit fidelity A. Sørensen, NBI

33 Quantum Memory for Light demonstrated
Deterministic Atomic Quantum Memory proposed and demonstrated for coherent states with <n> in the range 0 to 10; lifetime=4msec Fidelity up to 70%, markedly higher than best classical mapping

34 Spatial array of memory cells Detector array
Scalability – an array of dipole traps or solid state implementation – quantum holograms Detector array Spatial array of memory cells I. Sokolov and EP, to be submitted

35 Future: Inverse Mapping Atoms Light
Detector Proposals: Kuzmich, EP ; Kraus, Giedke, Cirac 2001 Y l/4 wave plate Recent advanced proposals: K. Hammerer, K. Mølmer, EP, J.I. Cirac. Phys.Rev. A., 70, (2004). J. Sherson, K. Mølmer, A.Sørensen, J. Fiurasek, and EP quant-ph/ Atoms Y Light pulse

36 z x y z y Quantum memory read-out: single pulse in squeezed state
Step 1 Exchange y and z components: pass light through l/4 plate and probe along spin-y axis y z Step 2

37 Light-Atoms Q-interface with cold atoms
6P Cesium clock levels F=4 F=3 D. Oblak C. Alzar, P. Petrov

38 Memory Summary New state transfer protocol → quantum memory for light
Experimental demonstration for coherent states Nature, 432, 482 (2004) Prediction for a qubit state – bridging dicrete and continuous variables State retrieval protocols

39 Criteria for light-ensemble interface
2-level stable state with long coherence time Initialization: collective coherent spin state (CSS) Coupling of the CSS to light corresponding to high optical density Figure of merit Probe depumping parameter:

40 Entangled atoms + Entangled light Light/atoms QI exchange
Atomic teleportation 3-party entanglement/ Secret sharing Scaling/ solid state implementation Entangled atoms + Entangled light Light/atoms QI exchange Quantum memory for light Color code hard “easy” Distillation by local operations Multi-atom Cat states Continuous variable logic Discrete variable logic

41 cavity enhanced interaction
enhanced phase shift power build-up inside cavity compensate with smaller photon number cold atomic cloud T: mirror transmission a: absorption

42 Coupling strength of the interface
x y z Initial coherent spin state: results in distribution Measurement on light Spin squeezed state Z degree of squeezing in Jz Figure of merit for the quantum interface Duan, Cirac, Zoller, EP PRL (2000)

43 Figure of merit for the quantum interface
Probe scattering parameter:

44 + h Spontaneous emission – the fundamental limit 0.3 10 30 50
Single pass interaction degree of entanglement Figure of merit for the quantum interface + h Spontaneous emission probability K. Hamerrer, K. Mølmer, E. S. Polzik, J. I. Cirac. PRA 2004, quant-ph/


Download ppt "Light-Matter Quantum Interface"

Similar presentations


Ads by Google