Download presentation
Presentation is loading. Please wait.
1
SPSS 分析簡介 何明洲 中山醫學大學心理系
2
資料在 SPSS 上之排列
3
Between-subject design, one factor with three levels
4
Within-subject design, one factor with three levels
5
分析方法的選擇 以 within-subject design 為主
6
Within-subject design Single Factor – Three Levels Two Factors – 2 x 2 Two Factors – 2 x 3
7
Single Factor – Three Levels
8
情緒雙字詞對於詞彙判斷作業的影響 情緒雙字詞種類:中性、負向、正向 Analyze General Linear Model Repeated Measures 。接著填上 獨變項 (emotion) 及其 Numbers of Levels (3) ,最後按下 Define 。
11
Compare with alpha =.05 / #of comparison 兩兩比較, alpha =.05 / 3 =.016
12
Two Factors – 2 x 2
13
情緒雙字詞(正向或負向) x 詞頻高低 (高或低)對於詞彙判斷作業的影響 Analyze General Linear Model Repeated Measures 。接著填上獨 變項 (emotion 和 freq) 及其 Numbers of Levels ( 各為 2) ,最後按下 Define 。
14
填上獨變項 (emotion 和 freq) 及其 Numbers of Levels ( 各 為 2) ,最後按下 Define
16
Main effect Interaction effect
17
因為只有 2 個 levels, main effect 看我即可 因為只有 2 個 levels, main effect 看我即可
18
Interaction effect 。需再 作 simple (main) effect
19
Factor B B1B2 Factor AA1A1B1A1B2 A2A2B1A2B2
20
freq 高低 Emotion 正向正向 / 高正向 / 低 負向負向 / 高負向 / 低 Factorial matrix Compare with alpha =.05 / #of comparison e.g., in this case, alpha =.025
21
freq 高低 Emotion 正向正向 / 高正向 / 低 負向負向 / 高負向 / 低 Factorial matrix
22
Two Factors – 2 x 3
23
情緒雙字詞(正向或負向) x 詞頻高低 (高、中、低)對於詞彙判斷作業的影 響 Analyze General Linear Model Repeated Measures 。接著填上獨 變項 (emotion 和 freq) 及其 Numbers of Levels ( 各為 2 和 3) ,最後按下 Define 。
26
Significant interaction simple (main) effect
27
Emotion = 1: Freq 1 vs. 2 vs. 3 Emotion = 2: Freq 1 vs. 2 vs. 3 Freq = 1: Emo 1 vs. 2 Freq = 2: Emo 1 vs. 2 Freq = 3: Emo 1 vs. 2
28
freq 高中低 Emotion 正向正向 / 高正向 / 中正向 / 低 負向負向 / 高負向 / 中負向 / 低 Factorial matrix Compare with alpha =.05 / #of comparison e.g., in this case, alpha =.025
29
freq 高中低 Emotion 正向正向 / 高正向 / 中正向 / 低 負向負向 / 高負向 / 中負向 / 低 如果剛剛的比較有顯著(如當 emotion= 正向時, freq= 高 中低至少會有一個不同於其他),就需要更進一步,兩 兩比較(高低、高中、低中), alpha =.025/3 =.008
30
freq 高中低 Emotion 正向正向 / 高正向 / 中正向 / 低 負向負向 / 高負向 / 中負向 / 低 Factorial matrix Compare with alpha =.05 / #of comparison e.g., in this case, alpha =.016
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.