Presentation is loading. Please wait.

Presentation is loading. Please wait.

FIGHTING ADVERSARIES IN NETWORKS Michelle Effros Michael Langberg Tracey Ho Philip Chou Kamal Jain Muriel Médard Dina Katabi Peter Sanders Ludo Tolhuizen.

Similar presentations


Presentation on theme: "FIGHTING ADVERSARIES IN NETWORKS Michelle Effros Michael Langberg Tracey Ho Philip Chou Kamal Jain Muriel Médard Dina Katabi Peter Sanders Ludo Tolhuizen."— Presentation transcript:

1 FIGHTING ADVERSARIES IN NETWORKS Michelle Effros Michael Langberg Tracey Ho Philip Chou Kamal Jain Muriel Médard Dina Katabi Peter Sanders Ludo Tolhuizen Sebastian Egner Sidharth Jaggi (MIT)

2 Network Coding “Justification” R. Ahlswede, N. Cai, S.-Y. R. Li and R. W. Yeung, "Network information flow," IEEE Trans. on Information Theory, vol. 46, pp. 1204-1216, 2000. http://tesla.csl.uiuc.edu/~koetter/NWC/Bibliography.html ≈ 200 papers in 3 years NetCod Workshops, DIMACS working group, ISIT 2005 - 4+ sessions, tutorials, … Several patents, theses…

3 “The core notion of network coding is to allow and encourage mixing of data at intermediate network nodes. “ (Network Coding Homepage) Network Coding... what is it?

4 Justifications - I s t1t1 t2t2 b1b1 b2b2 b2b2 b2b2 b1b1 b1b1 ? b1b1 b1b1 b1b1 b1b1 (b 1,b 2 ) b 1 +b 2 (b 1,b 2 ) [ACLY00] Throughput

5 Gap Without Coding... Coding capacity = h Routing capacity≤2 [JSCEEJT05] s

6 Multicasting Webcasting P2P networks Sensor networks s1s1 t1t1 t2t2 t |T| Network s |S|

7 Background Upper bound for multicast capacity C, C ≤ min{C i } s t1t1 t2t2 t |T| C |T| C1C1 C2C2 Network [ACLY00] - achievable! [LYC02] - linear codes suffice!! [KM01] - “finite field” linear codes suffice!!!

8 Background b1b1 b2b2 bmbm β1β1 β2β2 βkβk F(2 m )-linear network [KM01] Source:- Group together `m’ bits, Every node:- Perform linear combinations over finite field F(2 m )

9 Background s t1t1 t2t2 t |T| C |T| C1C1 C2C2 Network [ACLY00] - achievable! [LYC02] - linear codes suffice!! [KM01] - “finite field” linear codes suffice!!! [JCJ03],[SET03] - polynomial time code design!!!! [HKMKE03],[JCJ03] - random distributed code design!!!!!

10 Justifications - II s t1t1 t2t2 One link breaks Robustness/Distributed design

11 Justifications - II s t1t1 t2t2 b1b1 b2b2 b2b2 b2b2 b1b1 b1b1 (b 1,b 2 ) b 1 +b 2 Robustness/Distributed design (b 1,b 2 ) b 1 +2b 2 (Finite field arithmetic) b 1 +b 2 b 1 +2b 2

12 Random Robust Codes s t1t1 t2t2 t |T| C |T| C1C1 C2C2 Original Network C = min{C i }

13 Random Robust Codes s t1t1 t2t2 t |T| C |T| ' C1'C1' C2'C2' Faulty Network C' = min{C i '} If value of C' known to s, same code can achieve C' rate! (interior nodes oblivious)

14 Random Robust Codes Choose random [ß] at each node Decentralized design Percolate overall transfer function down network With high probability, invertible

15 Justifications - III s t1t1 t2t2 Security Evil adversary hiding in network eavesdropping, injecting false information [JLHE05],[JLHKM06?]

16 Model 1 - Encoding … T |E| … T 1... r1r1 r |E| nεnε D 11 …D 1|E| D |E|1 …D |E||E| D ij =T j (1).1+T j (2).r i +…+ T j (n(1- ε)).r i n(1- ε) … T j riri D ij j

17 Model 1 - Encoding … T |E| … T 1... r1r1 r |E| nεnε D 11 …D 1|E| D |E|1 …D |E||E| D ij =T j (1).1+T j (2).r i +…+ T j (n(1- ε)).r i n(1- ε) … T j riri D ij i

18 Model 1 - Transmission … T |E| … T 1... r1r1 r |E| D 11 …D 1|E| D |E|1 …D |E||E| … T |E| ’ … T 1 ’... r1’r1’ r |E| ’ D 11 ’…D 1|E| ’ D |E|1 ’…D |E||E| ’

19 Model 1 - Decoding … T |E| ’ … T 1 ’... r1’r1’ r |E| ’ D 11 ’…D 1|E| ’ D |E|1 ’…D |E||E| ’ “Quick consistency check” D ij ’=T j (1)’.1+T j (2)’.r i ’+…+ T j (n(1- ε))’.r i ’ n(1- ε) ? … T j ’ ri’ri’D ij ’

20 Model 1 - Decoding … T |E| ’ … T 1 ’... r1’r1’ r |E| ’ D 11 ’…D 1|E| ’ D |E|1 ’…D |E||E| ’ “Quick consistency check” D ij ’=T j (1)’.1+T j (2)’.r i ’+…+ T j (n(1- ε))’.r i ’ n(1- ε) ? … T j ’ ri’ri’D ij ’ D ji ’=T i (1)’.1+T i (2)’.r j ’+…+ T i (n(1- ε))’.r j ’ n(1- ε) ?

21 Model 1 - Decoding … T |E| ’ … T 1 ’... r1’r1’ r |E| ’ D 11 ’…D 1|E| ’ D |E|1 ’…D |E||E| ’ Edge i consistent with edge j D ij ’=T j (1)’.1+T j (2)’.r i ’+…+ T j (n(1- ε))’.r i ’ n(1- ε) D ji ’=T i (1)’.1+T i (2)’.r j ’+…+ T i (n(1- ε))’.r j ’ n(1- ε) Consistency graph

22 Model 1 - Decoding … T |E| ’ … T 1 ’... r1’r1’ r |E| ’ D 11 ’…D 1|E| ’ D |E|1 ’…D |E||E| ’ Consistency graph 1 2 4 5 3 (Self-loops… not important) T r,D T 1 2 3 4 5 Edge i consistent with edge j D ij ’=T j (1)’.1+T j (2)’.r i ’+…+ T j (n(1- ε))’.r i ’ n(1- ε) D ji ’=T i (1)’.1+T i (2)’.r j ’+…+ T i (n(1- ε))’.r j ’ n(1- ε)

23 Model 1 - Decoding … T |E| ’ … T 1 ’... r1’r1’ r |E| ’ D 11 ’…D 1|E| ’ D |E|1 ’…D |E||E| ’ 1 2 4 5 3 T r,D T 1 2 3 4 5 Consistency graph Detection – select vertices connected to at least |E|/2 other vertices in the consistency graph. Decode using T i s on corresponding edges.

24 Model 1 - Proof … T |E| ’ … T 1 ’... r1’r1’ r |E| ’ D 11 ’…D 1|E| ’ D |E|1 ’…D |E||E| ’ 1 2 4 5 3 T r,D T 1 2 3 4 5 Consistency graph D ij =T j (1)’.1+T j (2)’.r i +…+ T j (n(1- ε))’.r i n(1- ε) D ij =T j (1).1+T j (2).r i +…+ T j (n(1- ε)).r i n(1- ε) ∑ k (T j (k)-T j (k)’).r i k =0 Polynomial in r i of degree n over F q, value of r i unknown to Zorba Probability of error < n/q<<1

25 Greater throughput Robust against random errors... Aha! Network Coding!!!

26

27 ? ? ?

28 Xavier Yvonne 1 Zorba ? ? ? Yvonne |T| ? ? ?......

29 Setup 1.Scheme X Y Z 2.Network Z 3.Message X Z 4.Code Z 5.Bad links Z 6.Coin X 7.Transmit Y Z 8.Decode Y Eurek a Wired Wireless (packet losses, fading) Eavesdropped links Z I Attacked links Z O Who knows what Stage

30 Xavier Yvonne 1 ? Zorba ? ? Zorba sees M I links Z I, controls M O links Z O p I =M I /C, p O =M O /C Xavier and Yvonnes share no resources (private key, randomness) Zorba computationally unbounded; Xavier and Yvonnes -- “simple” computations Setup Zorba knows protocols and already knows almost all of Xavier’s message (except Xavier’s private coin tosses) Goal: Transmit at “high” rate and w.h.p. decode correctly Zorba (hidden) knows network; Xavier and Yvonnes don’t C MOMO Yvonne |T| ? ? ? Distributed design (interior nodes oblivious/overlay to network coding)

31 Background Noisy channel models (Shannon,…)  Binary Symmetric Channel p (“Noise parameter”) 0 1 1 C (Capacity) 01 H(p) 0.5

32 Background Noisy channel models (Shannon,…)  Binary Symmetric Channel  Binary Erasure Channel p (“Noise parameter”) 0 1 1 C (Capacity) 0E 1-p 0.5

33 Background Adversarial channel models  “Limited-flip” adversary, p I =1 (Hamming,Gilbert-Varshanov,McEliece et al…) Large alphabets (F q instead of F 2 )  Shared randomness, cryptographic assumptions… p O (“Noise parameter”) 0 1 1 C (Capacity) 01 0.5

34 p O (“Noise parameter”) 0 1 1 C (Capacity) Upper bounds 0.5 1-p O

35 p O (“Noise parameter”) 0 1 1 C (Capacity) Upper bounds 0.5 ? ? ? 0

36 p I =p O (“Noise parameter” = “Knowledge parameter”) 0 1 1 C (Capacity) Unicast [JLHE05] 0.5

37 p O (“Noise parameter”) 0 1 1 C (Capacity) Unicast [Folklore] 0.5 ( “Knowledge parameter” p I =1)

38 p O (“Noise parameter”) 0 1 1 C (Capacity) Upper bounds 0.5 ( “Knowledge parameter” p I =1) pOpO pOpO 1-2p O

39 p O (“Noise parameter”) 0 1 1 C (Capacity) Upper bounds 0.5 “Knowledge parameter” p I >0.5 ? ? ?

40 p O (“Noise parameter”) 0 1 1 C (Capacity) Upper bounds 0.5 “Knowledge parameter” p I >0.5 p O (“Noise parameter”) 0 1 1 C (Capacity) 0.5 “Knowledge parameter” p I <0.5

41 Ignorant Zorba 1.Code (X,Y,Z) 2.Message X p,X s (X) 3.Bad links (Z) 4.Coin (X) 5.Transmission (Y,Z) 6.Decode correctly (Y,Z) I(Z;X s )=0 Eurek a

42 p = |Z|/h 0 1 1 C (Normalized by h) General Multicast Networks 0.5 h Z S R1R1 R |T| Slightly more intricate proof

43 |E|-|Z| |E| |E|-|Z| Unicast - Encoding

44 |E|-|Z| |E| MDS Code X |E|-|Z| Block-length n over finite field F q |E|-|Z| n(1-ε) x1x1 … n Vandermonde matrix T |E| |E| n(1-ε) T1T1... n Rate fudge-factor “Easy to use consistency information” nεnε Symbol from F q Unicast - Encoding

45 … T |E| … T 1... r r nεnε D 1 …D |E| D i =T i (1).1+T i (2).r+…+ T i (n(1- ε)).r n(1- ε) TiTi rDiDi i Unicast - Encoding

46 … T |E| … T 1... r r D 1 …D |E| … T |E| ’ … T 1 ’... r’ D 1 ’…D |E| ’ Unicast - Transmission

47 D i =T i (1)’.1+T i (2)’.r+…+ T i (n(1- ε))’.r n(1- ε) ? If so, accept T i, else reject T i Unicast - Quick Decoding … T |E| ’ … T 1 ’... r r’ D 1 …D |E| D 1 ’…D |E| ’ Choose majority (r,D 1,…,D |E| ) ∑ k (T i (k)-T i (k)’).r k =0 Polynomial in r of degree n over F q, value of r unknown to Zorba Probability of error < n/q<<1 Use accepted T i s to decode

48 Choose random [ß] at each node Decentralized design Percolate overall transfer function down network With high probability, invertible Distributed Design [HKMKE03]

49 t1t1 t |T| S Distributed Design [HKMKE03] y s (j)=Tx s (j) x y1y1 β1β1 βiβi βhβh y |T| x b (i) x s (j) x b (1) x b (h) Rate h=C Block Slice hxh identity matrix x ’ b (i) h<<n T x s (j)=T -1 y s (j)

50 pOpO 0 1 1 C (Normalized by h) 0.5 Achievability - 1 R1R1 R |T| S S’ |Z| S’ 2 S’ 1 Observation 1: Can treat adversaries as new sources

51 y’ s (j)=Tx s (j)+T’x’ s (j) SS Supersource Observation 2: w.h.p. over network code design, {Tx S (j)} and {T’x’ S (j)} do not intersect (robust codes…). Corrupted Unknown Achievability - 1

52 y’ s (j)=Tx s (j)+T’x’ s (j) ε redundancy x s (2)+x s (5)- x s (3)=0 y s (2)+y s (5)-y s (3)= vector in {T’x’ s (j)} { T’x’ s (j)} { Tx s (j)} x s (3)+2x s (9)-5 x s (1)=0 y s (3)+2y s (9)-5y s (1)= another vector in {T’x’ s (j)} Achievability - 1

53 y’ s (j)=Tx s (j)+T’x’ s (j) ε redundancy { T’x’ s (j)} { Tx s (j)} Repeat M O times Discover {T’x’ s (j)} “Zero out” {T’x’ s (j)} Estimate T (redundant x s (j) known) Decode Achievability - 1

54 y’ s (j)=Tx s (j)+T’x’ s (j) x s (2)+x s (5)- x s (3)=0 y s (2)+y s (5)-y s (3)= vector in {T’x’ s (j)} x’ s (2)+x’ s (5)-x’ s (3)=0 y s (2)+y s (5)-y s (3)= 0 Achievability - 1

55 Secret Uncorrupted ε -rate Channels Useful abstraction [r,(∑ j x s (j)r j )] Secret, correct hashes of x s (j) Zorba doesn’t know how to hide Will return to this…

56 Achievability - 2 “Distributed Network Error-correcting Code” ( Knowledge parameter p I >0.5) [CY06] – bounds, high complexity construction [JHLMK06?] – tight, poly-time construction p O (“Noise parameter”) 0 1 1 C (Capacity) 0.5

57 pOpO pOpO y’ s (j)=Tx s (j)+T’x’ s (j) error vector 1-2p O Achievability - 2

58 y’ s (j)=T’’x s (j)+T’x’ s (j) Achievability - 2 T’’

59 y’ s (j)=T’’x s (j)+T’x’’ s (j) e e e’ Achievability - 2 T’’

60 y’ s (j)=Tx s (j)+T’x’ s (j) Achievability - 2 y’ s (j)=(T+T’L)x s (j)+T’(x’ s (j)-Lx s (j)) y’ s (j)=T’’x s (j)+T’x’’ s (j) T’’ known Any set of M O +1 {x’’ s (j)}s linearly dependent Let T’x’’ s (1) = a(1),…,T’x’’ s (M O )=a(M O ) A=[a(1)…a(M O )] y’ s (j)=T’’x s (j)+Ac(j) known Linearized equation, Size of A finite, Redundancy

61 M I +2M O <C M I <C-2M O Network error-correcting codes Zorba’s observations Using network error-correcting codes as small header, can transmit secret, correct information… … which can be used for first scheme! Achievability - 1.5 Not quite 2M O <C, 2M I <C

62 Working on it… “Slightly” non-linear codes Achievability - 1 2M O <C, 2M I <C Use fact that T, T’ in general unknown to adversary

63 p (“Noise parameter”) 0 1 1 C (Capacity) Ignorant Zorba - Results 0.5 1 X p +X s XsXs 1-2p

64 Overview Hidden, eavesdropping, malicious, computationally unbounded adversary Network topology unknown Polynomial time decoding overlaid on network code, achieves “almost optimal” performance

65 p (“Noise parameter”) 0 1 1 C (Capacity) Ignorant Zorba - Results 0.5 1 X p +X s XsXs 1-2p a+b+c a+2b+4c a+3b+9c MDS code

66 THE ENDTHE END


Download ppt "FIGHTING ADVERSARIES IN NETWORKS Michelle Effros Michael Langberg Tracey Ho Philip Chou Kamal Jain Muriel Médard Dina Katabi Peter Sanders Ludo Tolhuizen."

Similar presentations


Ads by Google