Presentation is loading. Please wait.

Presentation is loading. Please wait.

Analytical image perturbations for wave-equation migration velocity analysis Paul Sava & Biondo Biondi Stanford University.

Similar presentations


Presentation on theme: "Analytical image perturbations for wave-equation migration velocity analysis Paul Sava & Biondo Biondi Stanford University."— Presentation transcript:

1 paul@sep.stanford.edu Analytical image perturbations for wave-equation migration velocity analysis Paul Sava & Biondo Biondi Stanford University

2 paul@sep.stanford.edu Wave-equation MVA (WEMVA) Wavefield-based MVA method Closely related to –Wave-equation migration –Wave-equation tomography Benefits –Finite-frequency –Multipathing –Hi resolution

3 paul@sep.stanford.edu A tomography problem Traveltime tomography/MVA Wave-equation tomography Wave-equation MVA qq  t traveltime  d data  R image L ray fieldwavefield

4 paul@sep.stanford.edu Outline 1.WEMVA review 2.Image perturbation 3.Field data example

5 paul@sep.stanford.edu WEMVA: main idea

6 paul@sep.stanford.edu Born approximation

7 paul@sep.stanford.edu WEMVA: objective function slowness perturbation image perturbation slowness perturbation (unknown) Linear WEMVA operator image perturbation (known)

8 paul@sep.stanford.edu Slowness backprojection slowness perturbation image perturbation slowness perturbation image perturbation

9 paul@sep.stanford.edu MVA information Traveltime MVAWave-equation MVA Offset focusing (flat gathers) Spatial focusing Frequency redundancy  z  z xx

10 paul@sep.stanford.edu Outline 1.WEMVA review 2.Image perturbation 3.Field data example

11 paul@sep.stanford.edu “Data” estimate Traveltime MVA Wave-equation tomography Wave-equation MVA tt dd RR ray tracing data modeling residual migration

12 paul@sep.stanford.edu Prestack Stolt residual migration Background image R 1 Velocity ratio  Image perturbation  RR

13 paul@sep.stanford.edu Incorrect velocity Correct velocity Zero offset image Angle gathers Synthetic model

14 paul@sep.stanford.edu Residual migration: the problem

15 paul@sep.stanford.edu Differential image perturbation Image difference Image differential ComputedMeasured

16 paul@sep.stanford.edu Background image Zero offset image Angle gathers Background image

17 paul@sep.stanford.edu Differential image Zero offset image Angle gathers

18 paul@sep.stanford.edu Image to slowness perturbation Slowness perturbation Image perturbation

19 paul@sep.stanford.edu Image comparison Updated slowness Correct slowness Zero offset image slowness

20 paul@sep.stanford.edu Outline 1.WEMVA review 2.Image perturbation 3.Field data example

21 paul@sep.stanford.edu Field data example North Sea –Salt environment –One non-linear iteration Migration (background image) Residual migration (image perturbation) Slowness inversion (slowness perturbation) Slowness update (updated slowness) Re-migration (updated image) location depth

22 paul@sep.stanford.edu locationdepth Zero offset image Angle gathers Background slowness Background image

23 paul@sep.stanford.edu depth velocity ratio Semblance Angle-gathers

24 paul@sep.stanford.edu locationdepth Zero offset image Background image location “Ratio” map

25 paul@sep.stanford.edu locationdepthlocation Zero offset image Background image Image perturbation

26 paul@sep.stanford.edu locationdepthlocation Zero offset image Image perturbation Slowness perturbation

27 paul@sep.stanford.edu locationdepth Zero offset image Angle gathers Background slowness Background image

28 paul@sep.stanford.edu locationdepth Zero offset image Angle gathers Updated slowness Updated image

29 paul@sep.stanford.edu depth location Angle gathers “Correct” slowness Zero offset image “Correct” image

30 paul@sep.stanford.edu Summary Wave-equation MVA –Finite frequency –Multipathing –Hi resolution –Image space objective function Image perturbation –From prestack Stolt residual migration –Differential method –Compliant with the Born approximation


Download ppt "Analytical image perturbations for wave-equation migration velocity analysis Paul Sava & Biondo Biondi Stanford University."

Similar presentations


Ads by Google