Presentation is loading. Please wait.

Presentation is loading. Please wait.

מבוא מורחב למדעי המחשב בשפת Scheme תרגול 1. Outline Administration Dr. Scheme Functional vs. Imperative Programming Compiler vs. Interpreter Evaluation.

Similar presentations


Presentation on theme: "מבוא מורחב למדעי המחשב בשפת Scheme תרגול 1. Outline Administration Dr. Scheme Functional vs. Imperative Programming Compiler vs. Interpreter Evaluation."— Presentation transcript:

1 מבוא מורחב למדעי המחשב בשפת Scheme תרגול 1

2 Outline Administration Dr. Scheme Functional vs. Imperative Programming Compiler vs. Interpreter Evaluation Rule Scope 2

3 3 תרגולים ועזרים ספר הקורס (ניתן לקריאה ברשת, קישור מאתר הקורס( אתר הקורס: www.cs.tau.ac.il/~schemewww.cs.tau.ac.il/~scheme מתרגלים מעבדה פורום (קישור מאתר הקורס)

4 4 http://www.cs.tau.ac.il/~scheme

5 5 תרגילים תרגילים שבועיים שהגשתם חובה. הכנת התרגילים היא אישית. תוכניות יוגשו יחד עם דוגמאות הרצה שלהן (רלוונטי החל מהתרגיל השני). נדרש: לפחות 80% מהתרגילים בהצלחה. הגשה בדוא"ל: scheme@post.tau.ac.il לכתוב שם, ת.ז., מספר קבוצה, לצרף הצהרה חתומה ולשמור את אישור ההגשה. ערעור לבודק בכתב – לתיבת הדואר האישית. פרטים באתר הקורס.

6 6 Dr. Scheme התקנת התקנת המשערך (גירסא 209): התקנה בבית, דרך אתר הקורס, או http://www.drscheme.org מותקן במעבדה בבניין שרייבר במערכת הפעלה Linux: drscheme-209 & בהפעלה הראשונה (בלבד) Language->Choose Language-> Graphical (under PLT tab) (לאחר השינוי יש ללחוץ על כפתור ה-Run)

7 7

8 8 חלון ההגדרות חלון האינטרקציות

9 9 בדיקת תחביר

10 10 שמירת קבצים והדפסתם

11 11 עבודה בחלון האינטרקציות

12 12 עבודה בחלון ההגדרות Click on “Run”

13 Machine vs. High-Level Language 13 Assembly Code Binary Code MeaningHigh-Level Language Code ADD 5 7 1535 5 7 15 Op. code of ADD command is 35 Adds contents of the memory cell number(address) 5 to the content of cell #7 and put the results into the cell #15 X:=Y+Z (+ Y Z) JEQ 5 8 948 5 8 9 Op. code of JEQ command is 48 Examines the content of the memory cell #5. If it’s equal to zero it executes command located in the memory cell #8, otherwise executes command located in the memory cell #9 If(a==0) then ….. else …… end (IF a exp1 exp2) A Compiler is a software program that translates(compiles) programs written in high-level language into machine(binary) code

14 Compiler vs. Interpreter CompilerInterpreter Translate the whole program into a binary code understandable by hardware Evaluate commands (or expressions) one by one. Analyze code only onceAnalyze every expression each time it is executed Recompile whole program for any change Only changed expression/command is reevaluated 14 Dr. Scheme is an interpreter

15 Functional vs. Imperative Programming FunctionalImperative Basic paradigm Evaluation of expressions without side effects (changes in the memory state) Result of one expression can be used as an argument to another Execution of commands that change an environment (memory state) One command change (prepare) environment for another ExampleCompute: f(n)=“n* f(n-1) n>1 or 1 if n=1” on n=5; s:=1; k:=1 Repeat 5 times: s:=s*k; k:=k+1; EffectEvaluates function n! on n=5. No changes in the environment. Change state of the variable s so it contains 5!. Also change state of the variable k. 15 Scheme is a functional programming language (not purely functional)

16 Why functional programming? Program Optimization –Memorize value of expression instead of repeated evaluation –Do not evaluate an expression if its value is not used –No dependency => expressions can be evaluated in different order or in parallel Languages –Lisp, Scheme, Haskell, Erlang 16

17 Syntax vs. Semantics SyntaxSemantics Which expression is a legal expression? How to evaluate/execute a legal expression? A list is a legal expression in Scheme language Scheme uses the “evaluation rule” to compute value of an expression 17 (# 5 7) -is syntactically correct but has no meaning (f 5 7) –meaning(value) depends on the meaning of the symbol f

18 Postfix, Infix, Prefix notation 18 NameDescriptionExample InfixOperator is in- between operands (5+7)*8 PostfixOperator is after the operands 5 7 + 8 * PrefixOperator is before the operands * + 5 7 8 (* (+ 5 7) 8) : Scheme uses the prefix notation for arithmetic expressions

19 Reminder: The Scheme Language ElementExampleSemantics Simple Expression <,+,586Element’s value Means of Combination (+ 1 3 (* 5 7))Value of an expression Means of abstraction (define x 5)Associate name with a value Means of abstraction (lambda(x) (* x x))Create compound procedure (function) 19

20 Primitive vs. Compound Procedures Primitive procedures are part of the Scheme language (not defined using lambda expressions) –Arithmetic(+,*), IF, DEFINE Compound procedures are created by programmer using the lambda expressions – (lambda(x) (+ x 2)) 20

21 Some Scheme Expressions ExampleDescription (+ (- 9 7) 3) Arithmetic expression (< 5 2) (AND #t (< 10 5)) (OR #f (<10 20)) Boolean expressions (define x (+ 5 2)) Name definition (define g (lambda(a) (+a 1))) Function (compound procedure) definition (define (g a) (+ a 1)) (define (g b c) (+ b c)) Function definition using syntactic sugar (g x) ((lambda(d) (+ d 1)) 2) Function call (application of compound procedure) 21

22 Reminder: Syntactic Sugar Shortcuts in the syntax, do not add power to the language –Can write (define (f x) (* x x) ) –Instead of (define f (lambda(x) (* x x)) ) 22

23 23 Example in DrScheme

24 24 מספרים רציונליים ומרוכבים

25 25 מספרים גדולים Scheme תומך ב"מספרים גדולים", כאלה שגדולים מהמספרים המקסימליים שארכיטקטורת מחשב תומכת בהם ( > 2 32 -1, > 2 64 -1)

26 Reminder: Environment table (define x 5) associates name x to value of 5 in an environment table (define f (lambda(x)(* x x))) associates name f to the function lambda(x)(* x x) in an environment table 26 NameValue x5 flambda(x)(* x x) Environment Table >(+ x 5) 10 >(f 5) 25

27 Reminder: How to evaluate an expression ? An expression is usually built out of sub- expressions –(expr_0 expr_1 … exp_n) The first sub-expression evaluates to a primitive or compound procedure –(f (+ 2 3) (g 2)) Need well-defined rule to evaluate any expression 27

28 Remainder: Evaluation rule 1.Reduce step: Evaluate all sub-expressions (in any order) If the procedure to apply is a primitive, just do it. (+ (* 5 2) (* 5 4)) 2.Expand step(substitution model) If the procedure to apply is a compound procedure: Substitute by the body of the procedure while replacing each formal parameter with the corresponding actual arguments (define (f x) (* x x)) (f 5)-> (* 5 5) 28 What is the order of the application of step 1 and step 2? (f (* 5 2))

29 Normal vs. Applicative order ApplicativeNormal Step 0(f (+ 2 3) ) Step 1Reduce: (f 5)Expand: (+ (+ 2 3) 1) Step 2Expand: (+ 5 1)Reduce: (+ 5 1) Step 366 29 (define (f x) (+ x 1)) Usually same value if expressions have no side effects Consider ((lambda(x y) (+ x 2)) 1 (/ 1 0))

30 Why Applicative order? Think of the optimization (define (f x) (* x x)) (define (g x) (sqrt x)) Normal order evaluates (sqrt 2) twice (f (sqrt 2))  (* (sqrt 2) (sqrt 2)) What would happen if sqrt produced a side effect (e.g. prints on a display)? 30

31 31 What is the Scheme order? (define (square x) (* x x)) (define (sum-of-squares x y) (+ (square x) (square y))) (define (foo a) (sum-of-squares (+ a 1) (* a 2))) (foo 5) With DrScheme stepper*: *works for Beginning Student Language level only

32 Reminder: Special Forms Evaluation not according to standard rule or/and may have side effects 32 FormEffectExample (define name expr)Changes environment table(define x (+ 2 1)) (define (f x) (+ x 1)) (if a expr1 expr2)Only one out of expr1 and expr2 is evaluated depending on the value of a (if (= x 0) (myprint 1) (myprint 2)) (and exp1 exp2)If exp1 is false,exp2 is not evaluated (and (> 0 a) (< 2 (/ 1 a)) (or exp1 exp2 exp3)If exp1 is true, exp2 is not evaluated, if exp2 is true, exp3 will not be evaluated (or (= 0 a) (> 1 (/ 2 a))

33 33 דוגמא – ערך מוחלט (define (abs x) (if (< x 0) (- x) x))

34 34 עוד דוגמא (define (foo a b) ((if (> b 0) + -) a b)) (foo 2 6) (foo 5 -4)

35 35 Evaluation of An Expression To Apply a compound procedure: (to a list of arguments) Evaluate the body of the procedure with the formal parameters replaced by the corresponding actual values. Do not substitute for occurrences that are bound by an internal definition. To Evaluate a combination: (other than special form) a.Evaluate all of the sub-expressions in any order b.Apply the procedure that is the value of the leftmost sub-expression to the arguments (the values of the other sub-expressions) The value of a numeral: number The value of a built-in operator: machine instructions to execute The value of any name: the associated object in the environment

36 Scoping We have seen two methods to introduce names into a program: –Define form introduces a name associated with a procedure or an expression: (define x 5) (define (f x) (* x x)) –Lambda expression introduces names for formal parameters (define (g a b) (+ a b)) ((lambda(a b) (+ a b)) 2 3) Need rules to interpret names. (define x 5) ((lambda(x)(+ x 1)) x) 36

37 37 Bounded variables A procedure definition binds its formal parameters (their names) These names are called bounded variables. Other variables are free variables (define y 7) (define (foo x) (+ x y)) x is bounded to foo, while y is free

38 38 Scope The set of expressions for which binding defines a name is called a scope of this name A bound variable has its binding function’s body as a scope, and is unknown outside its scope Free variables are known anywhere in the program For variables with the same name and overlapping scopes, the more internal binding overrides the other

39 Example (define y 7) (define z 5) (define (foo x z) (+ x z y)) Foo binds x and z. x and z are bounded to foo Scope of x and z is the body of foo y is known everywhere, z=5 is only outside foo The meaning of foo will not change if we’ll change the names of its formal parameters. 39

40 Internal Definitions Can define a name inside the lambda expression (local to this procedure/lambda expression) It’s scope is limited to the rest of the body of the procedure (define (g x) (define a 5) (* x a)) Note: Body of a procedure(lambda expression) can consist of multiple sub-expressions. –The value of the last one is defined to be the value of the procedure 40

41 41 Evaluation of An Expression To Apply a compound procedure: (to a list of arguments) Evaluate the body of the procedure with the formal parameters replaced by the corresponding actual values. Do not substitute for occurrences that are bound by an internal definition. To Evaluate a combination: (other than special form) a.Evaluate all of the sub-expressions in any order b.Apply the procedure that is the value of the leftmost sub-expression to the arguments (the values of the other sub-expressions) The value of a numeral: number The value of a built-in operator: machine instructions to execute The value of any name: the associated object in the environment


Download ppt "מבוא מורחב למדעי המחשב בשפת Scheme תרגול 1. Outline Administration Dr. Scheme Functional vs. Imperative Programming Compiler vs. Interpreter Evaluation."

Similar presentations


Ads by Google