Download presentation
Presentation is loading. Please wait.
1
Evnine-Vaughan Associates, Inc. A Theory of Non-Gaussian Option Pricing: capturing the smile and the skew Lisa Borland Acknowledgements: Jeremy Evnine Roberto Osorio Jean-Philippe Bouchaud
2
Layout The Stock Price Model Option Pricing Theory – the Smile Results Option Pricing Theory – the Skew Results Conclusions
3
The Standard Stock Price Model
4
Gaussian Distribution Fokker-Planck Equation
5
The Generalized Returns Model
7
Student (Tsallis) Distribution Nonlinear Fokker-Planck
8
o Empirical --- Gaussian q=1.43 Tsallis Distribution (Osorio et al 2002)
9
More realistic model: eg moving average (work in progress ) Current Model: Extension to Model:
11
q=1.5 q=1 SP500 q=1.5
12
d=1 d=2 d=4 d=8 d=16 SP500 d=1 d=2 d=4 d=8 d=16 q=1.5 log P Y(t+d)-Y(t)
13
Deterministic Risk-Free Portfolio Return = risk-free rate r Generalized Black-Scholes PDE Arbitrage Theorem: Option
14
1) Exploit PDE’s implied by arbitrage-free portfolios Solve PDE to get option price 2) Convert prices of assets into martingales Take expectations to get option price
15
Not a martingale w.r.t. measure F Martingale:
16
Not a martingale w.r.t. measure F Martingale: Is a martingale w.r.t. measure Q Effectively:
17
Stock Price Example European Call
18
Stock Price Example European Call Must integrate
19
Path Integral: Generalized Feynman-Kac Ansatz: Tsallis (Student) weights Result: Forward Equation:
20
Result: Generalized Feynman-Kac
21
Stock Price Example European Call
22
Stock Price Payoff if Example European Call q = 1: P is Gaussian q >1 : P is fat tailed Student(Tsallis) dist.
23
T=0.6 T=0.05 Call Price Difference S(0) = $50, r= 6%, =0.3 $
24
T=0.1 T=0.4 Black-Scholes (q=1) volatilities implied from q=1.5 model
25
q=1.5
26
K=50, T=0.4, sigma=0.3, r=.06
27
q=1 q=1.5 q=1.45 q=1.4 q=1.3 K=50, T=0.4, sigma=0.3, r=.06
28
Volatility Smiles o Empirical implied vols __ q=1.43 implied vols
29
Implied Volatility JY Futures 16 May 2002 T=17 days
30
Implied Volatility JY Futures 16 May 2002 T=37 days
31
Implied Volatility JY Futures 16 May 2002 T=62 days
32
Implied Volatility JY Futures 16 May 2002 T=82 days
33
Implied Volatility JY Futures 16 May 2002 T=147 days
34
Term Structure q=1 (BS) q=1.4 (Vol Surface)
35
Example Currency Futures: Benefits of a more parsimonious model: 1)Better pricing - arbitrage opportunities 2) Better hedging 1. 0.16 1.4 0.008 q Mean square relative pricing error (500 options)
36
(with Jean-Philippe Bouchaud) The Generalized Model with Skew Volatility Leverage Correlation
38
(with Jean-Philippe Bouchaud) The Generalized Model with Skew
39
(with Jean-Philippe Bouchaud) The Generalized Model with Skew small
40
Example European Call Payoff if Integrate using Feynman-Kac and Pade expansion
43
Comments q=1: CEV model of Cox and Ross recovered Skew model can be mapped onto a higher dimensional free-particle diffusion in cylindrical coordinates Exact solutions in terms of hyper-geometric functions ?
44
T=0.1 T=0.5 T=1.0 S(0) = 50 alpha = 0. Volatility Skew :
45
S0=50 T=0.5 sigma=0.3 r=0.06 q=1.5
47
q =1
48
q=1.5 K=50,T=0.5,sigma=0.3,r=.06
49
Strike K T=.03 T=0.1 T=0.2 T=0.3 T=0.55 SP500 OX q=1.5, alpha = -1.
50
T=.082T=.159 T=.41 T=1.17 MSFT Nov 19 2003 ATM = 25.55
51
SABR Model
52
T Sigma q=1.4
53
Conclusions Simple – few parameters, easy to calculate Promising for describing real markets Better hedging, better pricing Possible to apply to other areas of mathematical finance Future work : Extending model for underlying Exotics And more …
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.