Download presentation
Presentation is loading. Please wait.
1
X Ray Transport / Optics / Diagnostics Overview Richard M. Bionta Facility Advisory Committee Meeting April 29, 2004 Richard M. Bionta Facility Advisory Committee Meeting April 29, 2004
2
Richard M. Bionta XTOD Overviewebionta1@llnl.gov April 29, 2004 Undulator Hall Electron Dump Front End Enclosure Near Experimental Hall X-Ray Tunnel Far Experimental Hall Electron Transport Linac
3
Richard M. Bionta XTOD Overviewebionta1@llnl.gov April 29, 2004 XTOD Goals Provide vacuum path from end of undulator to hutches in Far Hall with capability of attenuating beam to synchrotron levels. Provide necessary diagnostics to commission the LCLS and monitor its performance. Demonstrate detection and optical techniques that would be useful to users.
4
Richard M. Bionta XTOD Overviewebionta1@llnl.gov April 29, 2004 X-ray Transport, Optics, and Diagnostics Layout Front End Enclosure Fast Close Valve Slits Attenuators Shielding FEL Measurements & Experiments: Low Power Imaging High Power Imaging Spectrometer Calorimeter Flipper Mirror Experiments Optics Structual Bio Nano-scale Femtochem FEE NEH FEH Tunnel Experiments: Optics Warm Dense Matter Experiments: Atomic Physics FEH Optics: Pulse-Split-&-Delay Monochrometer
5
Richard M. Bionta XTOD Overviewebionta1@llnl.gov April 29, 2004 Calculated Peak FEL Fluence along Z Distance from undulator exit (m) Fluence, J/cm 2 10 1 0.1 0.01 The fluence decrease with distance and photon energy, and ranges from 30 J cm -2 to < 0.01 J cm -2 Peak Fluence, J/cm 2 FEH FEE-NEH 1000200300 400
6
Richard M. Bionta XTOD Overviewebionta1@llnl.gov April 29, 2004 Energy depositions near melt cause damage Pressure in a Multilayer of Be B 4 C. 8 keV photons in Near Hall pressure (kbar) -40 90 0 t = 50 ps Pressure and density in a Si mirror (surface melted), for 2 keV photons near undulator. 5 0 5 0 2.05 2.45 density (g/cc) t = 50 ps Transverse distance (µm) P time (ps) 10 20 30 40 50 60 70 80 90 100 2 kbar depth (µm) BeB4CB4C 01234 5
7
Richard M. Bionta XTOD Overviewebionta1@llnl.gov April 29, 2004 LCLS fluence melts many materials in a single pulse NEH FEH FEE Normal incidence, fluence to melt (without latent heat of melting). The gains (reduced dose) available by operating below grazing incidence are ~ 10. Based on melt damage, the FEE and NEH require the use of low-Z materials and / or grazing incidence geometry. The FEH allows some standard solutions. Grazing incidence may help
8
Richard M. Bionta XTOD Overviewebionta1@llnl.gov April 29, 2004 Fast close valve Slit A PPS 13' Muon shield Gas Attenuator Solid Attenuator Slit B PPS 4' Muon shield Windowless Ion Chamber Direct Imager Indirect Imager Spectrometer, Total Energy PPS Access Shaft Access Shaft Electron Beam Photon Beam Electron Dump Front End Enclosure NEH Hutch 1 Front End Enclosure/ Hutch 1 Layout
9
Richard M. Bionta XTOD Overviewebionta1@llnl.gov April 29, 2004 Adjustable High-Power Slits Intended to intercept spontaneous beam, not FEL beam -- but will come very close, so peak power is an issue Treat jaw as mirror (high-Z material) Concept requires long jaws with precision motion
10
Richard M. Bionta XTOD Overviewebionta1@llnl.gov April 29, 2004 Windowless Gas Attenuator – 10 m system Region of highest pressure Gas Inlet Window Vacuum pumps Photon Energy eV GasPressure, torrTransmission 800N1.6510 -4 8260Ar100.2
11
Richard M. Bionta XTOD Overviewebionta1@llnl.gov April 29, 2004 Gas Attenuator – Window Options Open, tilted, nozzle High gas flow Rotating slots Synchronization Plasma Window Gas flow Photon Energy eVFEL FWHM mm 8001.252 82600.176 Z = 90 m
12
Richard M. Bionta XTOD Overviewebionta1@llnl.gov April 29, 2004 LCLS Commissioning Measuring Gain vs z. Kick beam at z to stop FEL gain Measure at end of undulator Measure Spectra with resolution < = 5-15x10 -4 But with bandwidth of 0.5% Measure Pulse length
13
Richard M. Bionta XTOD Overviewebionta1@llnl.gov April 29, 2004 Spontaneous radiation is a big background 0 < E photon < 1.2 MeV 400 keV < E photon < 1.2 MeV Far-field radiation pattern calculated by R. Tatchyn 400 m from undulator exit
14
Richard M. Bionta XTOD Overviewebionta1@llnl.gov April 29, 2004 NEH Hutch 1 Diagnostic systems Windowless Ion Chamber Imaging Detector Tank Comissioning Tank
15
Richard M. Bionta XTOD Overviewebionta1@llnl.gov April 29, 2004 Low Power imaging camera prototype CCD Camera Microscope Objective LSO or YAG:Ce crystal prism assembly X-ray beam
16
Richard M. Bionta XTOD Overviewebionta1@llnl.gov April 29, 2004 Camera configuration allows choice of resolution / FOV 1.5 mm 1.1 mm 1.5 mm
17
Richard M. Bionta XTOD Overviewebionta1@llnl.gov April 29, 2004 Indirect, high power imaging system Be Mirror Be Mirror angle provides "gain" adjustment over several orders of magnitude. Cuts off high energy spontaneous
18
Richard M. Bionta XTOD Overviewebionta1@llnl.gov April 29, 2004 Commissioning Diagnostics Intrusive measurements behind attenuator Measurements Photon energy spectra Total energy Spatial coherence Spatial shape and centroid Divergence R&D Pulse length
19
Richard M. Bionta XTOD Overviewebionta1@llnl.gov April 29, 2004 Sensitivity test X-ray pulse length / synchronization concept Trigger A Tunable Laser OSA Detector Scope EDFA P 50:50 90:10 -1dB -15 dB 30 dBm X-ray pulse Detector 0 dBm 26 dBm 11 dBm 10 dBm 9 dBm Optical Fiber Pigtailed Sensor InGaAsP Ridge Waveguide Mach-Zehnder Interferometer to convert sensor optical phase modulation to intensity modulation 0.2 m InP cap 0.6 m InGaAsP waveguide
20
Richard M. Bionta XTOD Overviewebionta1@llnl.gov April 29, 2004 Sputtered-sliced multilayer gratings as high bw spectrometers 5- m-thick Mo/Si multilayer (d=200 Å) on Si wafer substrate. Thinned and polished to a 10- m-thick slice 0.3 m SEM image of Mo/Si multilayer
21
Richard M. Bionta XTOD Overviewebionta1@llnl.gov April 29, 2004 Low-Z Refractive Optic Alternatives to Hi-Z Mirrors Diamond-Turned Al Blazed Phase PlateDiamond-Turned Be Parabola
22
Richard M. Bionta XTOD Overviewebionta1@llnl.gov April 29, 2004 Modeling and simulation Roman’s Spontaneous Time Domain Frequency Domain Temporal Spatial Transforms Materials Data Base Monte Carlo Multi-mode Wave Gaussian Undulator Optics Far-field Spontanious Distribution Diffracted FEL Beam Modulation of modes by optics
23
Richard M. Bionta XTOD Overviewebionta1@llnl.gov April 29, 2004 Photon Monte Carlo Simulations for predicting backgrounds and detector performance SPEAR source simulation Visible photons X, microns Y, microns Monte Carlo Bend LSO X Ray Photons
24
Richard M. Bionta XTOD Overviewebionta1@llnl.gov April 29, 2004 Common SW base for managing deliverables Models of deliverables Materials FEL Sim Spontaneous Sim GingerFar Field Ray Tracer Data Analysis Data Storage Data Acquisition Design Specs Near Field
25
Richard M. Bionta XTOD Overviewebionta1@llnl.gov April 29, 2004 Schedule
26
Richard M. Bionta XTOD Overviewebionta1@llnl.gov April 29, 2004 Schedule (cont.)
27
Richard M. Bionta XTOD Overviewebionta1@llnl.gov April 29, 2004 Resources
28
Richard M. Bionta XTOD Overviewebionta1@llnl.gov April 29, 2004 XTOD Summary Large number of independent deliverables Draw heavily on diverse engineering talent from LLNL Source for testing damage issues does not exist Multiple detector / optics schemes Funding Profile means considerable design work still ahead Extensive simulations of beam and components The resources are available for success.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.