Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 White Parts from: Technical overview for machine-learning researcher – slides from UAI 1999 tutorialTechnical overview for machine-learning researcher.

Similar presentations


Presentation on theme: "1 White Parts from: Technical overview for machine-learning researcher – slides from UAI 1999 tutorialTechnical overview for machine-learning researcher."— Presentation transcript:

1 1 White Parts from: Technical overview for machine-learning researcher – slides from UAI 1999 tutorialTechnical overview for machine-learning researcher – slides from UAI 1999 tutorial Part II

2 2

3 3

4 4 = C t,h Example: for (ht + htthh), we get p(d|m) = 3!2!/6!

5 5

6 6 Numerical example for the network X 1  X 2 Imaginary sample sizes denoted N’ ijk Data: (true, true) and (true, false)

7 7

8 8 Used so far Desired

9 9 How do we assign structure and parameter priors ? Structure priors: Uniform, partial order (allowed/prohibited edges), proportional to similarity to some a priori network.

10 10 BDe K2K2

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18 Example: Suppose the hyper distribution for (X 1,X 2 ) is Dir( a 00, a 01,a 10, a 11 ). So how to generate parameter priors?

19 19 Example: Suppose the hyper distribution for (X 1,X 2 ) is Dir( a 00, a 01,a 10, a 11 ) This determines a Dirichlet distribution for the parameters of both directed models.

20 20

21 21 Summary: Suppose the parameters for (X 1,X 2 ) are distributed Dir( a 00, a 01,a 10, a 11 ). Then, parameters for X 1 are distributed Dir(a 00 +a 01,a 10 +a 11 ). Similarly, parameters for X 2 are distributed Dir(a 00 +a 10,a 01 +a 11 ).

22 22 BDe score:

23 23

24 24

25 25

26 26 n Example: f(x+y) = f(x) f(y) n Solution: (ln f )`(x+y) = (ln f )`(x) n and so: (ln f )`(x) = constant n Hence: (ln f )(x) = linear function n hence: f(x) = c e ax n Assumptions: Positive everywhere, Differentiable Functional Equations Example

27 27 The bivariate discrete case

28 28 The bivariate discrete case

29 29 The bivariate discrete case

30 30 The bivariate discrete case

31 31

32 32


Download ppt "1 White Parts from: Technical overview for machine-learning researcher – slides from UAI 1999 tutorialTechnical overview for machine-learning researcher."

Similar presentations


Ads by Google