Download presentation
Presentation is loading. Please wait.
1
Bases géométriques de l’informatique – Part deux Jean Ponce “Hauts du DI” Email: ponce@di.ens.frponce@di.ens.fr Web: http://www.di.ens.fr/~poncehttp://www.di.ens.fr/~ponce Planches après les cours sur : http://www.di.ens.fr/~ponce/geomvis/lect1.pptx http://www.di.ens.fr/~ponce/geomvis/lect1.pdf
2
References R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision”, Cambridge University Press, 2000. O.D. Faugeras, Q.-T. Luong, and T. Papadopoulo, “The Geometry of Multiple Images”, MIT Press, 2001. D.A. Forsyth and J. Ponce, “Computer Vision: A Modern Approach”, Prentice-Hall, 2002, 2011 (2 nd edition). J.J. Koenderink, “Solid Shape”, MIT Press, 1990. M. Berger, “Géométrie”, Nathan, 1992. D. Hilbert and S. Cohn-Vossen, “Geometry and the Imagination”, Chelsea, 1952.
3
Images are two-dimensional patterns of brightness values. They are formed by the projection of 3D objects.
5
How do we perceive depth?
6
Building large-scale 3D models from photographs Structure from motionDense multiview stereo Snavely, Seitz, Szeliski, 2007 Vergauwen, Van Gool, 2006 Brown, Lowe, 2005 Schaffalitzky, Zisserman, 2002 Furukawa, Ponce, 2007 Labatut, Pons, Keriven, 2009 Goesele, et al., 2007 http://phototour.cs.washington.edu/bundler/http://grail.cs.washington.edu/software/pmvs/
7
Google Maps Photo Tour Lucasfilm Weta Digital (© Bath & Burke, Weta Digital, Siggraph’11) PMVS (http://www.di.ens.fr/pmvs)
8
A model built from 25,000 photos (Ubelmann, Dessales, Ponce, 2013)
9
What is a camera? x
10
What is a camera? x
11
What is a camera? x x c ξ r y
12
x c ξ r y c
13
x c ξ r y x c ξ
14
x c ξ r y x c ξ ξ
15
x c ξ r y x ξ r y Linear family of lines x ξ x c ξ ξ ξ
16
Rank-4 (nondegenerate) families: Linear congruences Figures © H. Havlicek, VUT
17
Building a parabolic camera (Batog, Goaoc, Lavandier, Ponce, 2010)
18
Koenderink (1984) Solid shapes and their outlines
19
What does the occluding contour tell us about shape? (Marr & Nishihara, 1978; Koenderink, 1984)
20
What does the occluding contour tell us about shape? (Marr & Nishihara, 1978; Koenderink, 1984)
21
What does the occluding contour tell us about shape? M. Van Hemskeerk Picasso Dürer
22
The Geometry of the Gauss Map Gauss sphere Image of parabolic curve Moving great circle Reprinted from “On Computing Structural Changes in Evolving Surfaces and their Appearance,” By S. Pae and J. Ponce, the International Journal of Computer Vision, 43(2):113-131 (2001). 2001 Kluwer Academic Publishers.
23
PLAN DU COURS: 1. Introduction générale 2. Caméras Euclidiennes : perspective centrale, projection parallèle; paramètres intrinsèques et extrinsèques; mires et étalonnage Euclidien. 3. Caméras affines : éléments de géométrie affine; géométrie multi vues, analyse du mouvement. 4. Caméras projectives : éléments de géométrie projective; géométrie multi vues, analyse du mouvement. 5. Étalonnage Euclidien sans mire : la conique absolue de Chasles et ses cousines; analyse du mouvement Euclidien. 6. Caméras purement projectives : éléments de géométrie des droites; caméras linéaires « générales ». 7. Les surfaces Euclidiennes lisses et leurs silhouettes : géométrie différentielle descriptive; le théorème de Koenderink et les graphes d'aspects.
24
Euclidean Cameras Pinhole perspective projection Orthographic and weak-perspective models Non-standard models A detour through sensing country Intrinsic and extrinsic parameters
25
Animal eye: a looonnng time ago. Pinhole perspective projection: Brunelleschi, XV th Century. Camera obscura: XVI th Century. Photographic camera: Niepce, 1816.
27
Massaccio’s Trinity, 1425 Pompei painting, 2000 years ago. Van Eyk, XIV th Century Brunelleschi, 1415
28
Pinhole Perspective Equation NOTE: z is always negative..
29
Affine projection models: Weak perspective projection is the magnification. When the scene relief is small compared its distance from the Camera, m can be taken constant: weak perspective projection.
30
Affine projection models: Orthographic projection When the camera is at a (roughly constant) distance from the scene, take m=-1.
31
Planar pinhole perspective Orthographic projection Spherical pinhole perspective
32
Diffraction effects in pinhole cameras. Shrinking pinhole size Use a lens!
33
Lenses Snell’s law n 1 sin 1 = n 2 sin 2 Descartes’ law
34
Thin Lenses
35
Spherical Aberration Distortion Chromatic Aberration
36
A compound lens
37
E=( /4) [ (d/z’) 2 cos 4 ] L
38
Vignetting
39
Challenge: Illumination – What is wrong with these pictures?
40
Photography (Niepce, “La Table Servie,” 1822) Milestones: Daguerréotypes (1839) Photographic Film (Eastman, 1889) Cinema (Lumière Brothers, 1895) Color Photography (Lumière Brothers, 1908) Television (Baird, Farnsworth, Zworykin, 1920s) CCD Devices (1970)
41
Image Formation: Radiometry What determines the brightness of an image pixel? The light source(s) The surface normal The surface properties The optics The sensor characteristics
42
Quantitative Measurements and Calibration Euclidean Geometry
43
Euclidean Coordinate Systems
44
Planes
45
Coordinate Changes: Pure Translations O B P = O B O A + O A P, B P = A P + B O A
46
Coordinate Changes: Pure Rotations
47
Coordinate Changes: Rotations about the z Axis
48
A rotation matrix is characterized by the following properties: Its inverse is equal to its transpose, and its determinant is equal to 1. Or equivalently: Its rows (or columns) form a right-handed orthonormal coordinate system.
49
Coordinate Changes: Pure Rotations
50
Coordinate Changes: Rigid Transformations
51
Cameras and their parameters
52
Pinhole Perspective Equation
53
The Intrinsic Parameters of a Camera Normalized Image Coordinates Physical Image Coordinates Units: k,l : pixel/m f : m : pixel
54
The Intrinsic Parameters of a Camera Calibration Matrix The Perspective Projection Equation
55
The Extrinsic Parameters of a Camera p ≈ M P
56
Explicit Form of the Projection Matrix Note: M is only defined up to scale in this setting!!
57
Theorem (Faugeras, 1993)
58
Calibration Problem
59
Linear Camera Calibration
60
Linear Systems A A x xb b = = Square system: unique solution Gaussian elimination Rectangular system ?? underconstrained: infinity of solutions Minimize |Ax-b| 2 overconstrained: no solution
61
How do you solve overconstrained linear equations ??
62
Homogeneous Linear Systems A A x x0 0 = = Square system: unique solution: 0 unless Det(A)=0 Rectangular system ?? 0 is always a solution Minimize |Ax| under the constraint |x| =1 2 2
63
How do you solve overconstrained homogeneous linear equations ?? The solution is e. 1 E(x)-E(e 1 ) = x T (U T U)x-e 1 T (U T U)e 1 = 1 1 2 + … + q q 2 - 1 > 1 ( 1 2 + … + q 2 -1)=0
64
Example: Line Fitting Problem: minimize with respect to (a,b,d). Minimize E with respect to d: Minimize E with respect to a,b: where Done !! n
65
Note: Matrix of second moments of inertia Axis of least inertia
66
Linear Camera Calibration Linear least squares for n > 5 !
67
Once M is known, you still got to recover the intrinsic and extrinsic parameters !!! This is a decomposition problem, not an estimation problem. Intrinsic parameters Extrinsic parameters
68
Degenerate Point Configurations Are there other solutions besides M ?? Coplanar points: ( )=( ) or ( ) or ( ) Points lying on the intersection curve of two quadric surfaces = straight line + twisted cubic Does not happen for 6 or more random points!
69
Analytical Photogrammetry Non-Linear Least-Squares Methods Newton Gauss-Newton Levenberg-Marquardt Iterative, quadratically convergent in favorable situations
70
Mobile Robot Localization (Devy et al., 1997)
71
(Rothganger, Sudsang, & Ponce, 2002)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.